
Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5708

Catch-Phish: An Automated Phishing Page
Detection and Reconnaissance System
1
Kazeem B. Adedeji,

2
Ayobami O. Adedokun,

3
Sammy O. Oladiran, and

1
Titilayo A. Ogunjobi

1
Department of Electrical and Electronics Engineering, Federal University of Technology Akure, Ondo State,

Nigeria
2
Department of Computer Engineering, Federal University of Technology Akure, Ondo State, Nigeria

3
Department of Information and Communication Technology, Federal University of Technology Akure, Ondo

State, Nigeria
Email: kbadedeji@futa.edu.ng

Abstract— The internet has firmly established
itself in daily life through its ability to connect
people and businesses worldwide. With
increasing reliance on the internet for
communication, business, and social networking,
the security of online information has become a
serious problem. Attackers can now target people
and organizations on a global scale, and phishing
is one of the most popular and effective methods.
Phishing attacks have become a major concern
for individuals and organizations, with over
200,000 unique phishing attacks being reported in
the first quarter of 2021. In response to this
growing threat, this study developed an
automated phishing page detection and
reconnaissance system. The system is built as a
desktop application using Electron.js, integrating
both the frontend and backend, with the Google
Maps API utilized for domain location
visualization. The frontend of the web browser
application was developed using Bootstrap, while
Node.js served as the backend. Both applications
interact with IPQualityScore’s Malicious URL
Scanner API, leveraging machine learning
algorithms and querying up-to-date databases of
phishing URLs to detect webpage risks and zero-
day phishing threats. The system also
incorporates a feedback mechanism that allows it
to adapt to new phishing techniques used by
attackers. The performance of the system was
evaluated using a dataset of phishing and
legitimate websites and it achieved an accuracy
rate of 95.6%. This system offers a promising
solution to the problem of phishing attacks and
provides individuals and organizations with a
powerful tool to protect themselves against these
threats.

Keywords—internet; cyber security; phishing
attack detection; machine learning

I. INTRODUCTION

The internet has become an integral part of our
lives, connecting people and businesses worldwide.
With increasing reliance on the internet for

communication, commerce, and social networking, the
security of online information has become a major
concern. The internet has enabled attackers to target
individuals and organizations globally, with phishing
being one of the most common and successful attacks
as illustrated in Fig. 1. The figure shows the
distribution of security attacks on the internet and their
victims. 324, 000 were reported to be phishing victims,
while victims of other attacks like spoofing, extortion
were not up to 50% of phishing victims all through that
year. This suggests that phishing is a very viable
attack and current guards against it have not been
very effective.

Fig. 1. Security threat on the internet [1].

Phishing, among other cybercrimes, has increased in
frequency over time, harming people, and businesses
severely. The goal of a phishing attack is to deceive a
target into disclosing personal information or
downloading malware onto their computer. As shown
in Fig. 2, phishing attacks are frequently conducted by
building a phoney login page that looks real but is
under the attacker's control. These pages are
frequently used to steal credit card numbers, login
credentials, and other private sources of information.
A successful phishing attack can have many
consequences. Among others, the financial loss due
to phishing attacks is significant. An internet crime
report presented by the FBI in 2018 revealed that
business email compromise attacks cost US
businesses over $1.2 billion [2]. The creation of an

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5709

automated phishing page detection and
reconnaissance system is vital for limiting the hazards
posed by phishing attempts.

Fig. 2. An illustartionof phishing attack [2].

In recent years, online attackers have become
more skilled at deceiving their targets, leading to an
increase in phishing attempts. Making phony login
pages that mimic authentic websites is one of the
most widely utilized phishing attack strategies. These
pages are frequently stored on servers owned by the
attackers or those that have been compromised
online. An attacker can exploit a victim's login
credentials to access the victim's accounts or steal
their data once the victim entered them. Developing a
scheme that can automatically detect phishing pages
is vital. Several studies have been conducted in the
past with varying degree of success [3-7].
Comparing the proposed approach to current phishing
detection systems will yield several advantages. First,
because of its attachment to existing machine learning
algorithms, which can rapidly and accurately identify
phishing pages based on their features, it is more
accurate and dependable. The solution will also be
quicker than current tools, enabling real-time
identification and phishing attack prevention. The
proposed system is also easier for consumers to use,
with a straightforward interface that enables them to
quickly and easily recognize and generate reports on
phishing URLs. Desktop web browser users can
utilize a variety of tools to identify phishing pages;
however, the efficacy of these tools is frequently
constrained. Many rely on user feedback, which can
be slow and unreliable, to find the phishing URLs.
Some technologies utilize heuristics to identify
phishing pages; however, these heuristics can be
easily bypassed by attackers. By utilizing endpoints
based on machine learning techniques to
automatically identify and categorize phishing pages,
the suggested solution seeks to overcome these
restrictions. By connecting to other systems that have
been trained on a sizable dataset of well-known
phishing pages, the system can recognize traits that
are typical of phishing pages. Additionally, the system
can instantly update its algorithms, enabling it to
adjust quickly to new phishing techniques as they
appear.

II. LITERATURE REVIEW

Phishing is a fraudulent activity where an attacker
attempts to obtain sensitive information such as login
credentials, credit card details, or other personal
information by posing as a trustworthy entity. Phishing
attacks can occur via email, text message, or phone
call, and they are becoming increasingly
sophisticated, making them difficult to detect. Phishing
scams are one of the most common types of web
scams, where scammers send fake emails or
messages that appear to be from legitimate sources
to trick individuals into divulging sensitive information
such as usernames, passwords, or credit card details.
According to a study by the Anti-Phishing Working
Group (APWG) [8], there were over 222,000 unique
phishing attacks reported in the first quarter of 2021,
with the financial sector being the most targeted.

Another security threat on the internet is malware.
Malware is malicious software designed to damage or
disrupt computer systems, steal information, or gain
unauthorized access to a computer network. Malware
can be introduced to a computer system through
various means, such as downloading a malicious
attachment, clicking on a malicious link, or visiting a
compromised website. Other internet security threats
include hacking, denial of service attacks (DoS),
distributed denial of service (DDoS), ransomware, and
social engineering. Hacking involves unauthorized
access to computer systems, while denial of service
attacks aims to disrupt the availability of a particular
service or website by flooding it with numerous spoof
request. Ransomware is a type of malware that
encrypts data on a computer system and demands a
ransom payment to restore access, while social
engineering involves manipulating individuals into
divulging sensitive information. Some components of
social engineering include Cyber-stalking, spear-
phishing, vishing, smishing etc.

The consequences of these security threats can be
severe, ranging from financial losses to reputational
damage for organizations. Fig. 3 shows that during
the COVID-19 pandemic, phishing was the mostly
used social engineering technique used for cyber-
attacks (35.3%) while cyber-stalking was the least
used (1.3%).

Fig. 3. Different social engineering techniques used for
cyber-attacks druing the cOVID-19 pandemic [9].

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5710

A. Phishing Background and its Impact

Phishing detection systems are critical in mitigating
the negative impact of phishing attacks. These
systems aim to identify and block phishing messages
before they reach the intended victims, or to detect
and block phishing websites that try to lure users into
divulging sensitive information [10]. Effective phishing
detection systems can help prevent financial losses,
identity theft, and reputational damage for individuals
and organizations [11]. Phishing detection systems
can also help organizations comply with legal and
regulatory requirements related to data protection and
privacy. For example, the General Data Protection
Regulation (GDPR) requires organizations to
implement appropriate technical and organizational
measures to protect personal data from unauthorized
access, disclosure, or theft [12]. Moreover, phishing
detection systems are essential in maintaining user
trust and confidence in online services and e-
commerce platforms. By ensuring that users can
transact safely and securely, organizations can foster
customer loyalty and build their reputation [13]. An
effective phishing detection and mitigation
mechanisms can help prevent financial losses, identity
theft, and reputational damage, and maintain user
trust and confidence in online services.
Website anti-phishing techniques can be categorized
into 4 according to the studies presented by [14]. This
category is illustrated in Fig. 4.

Fig. 4. Types of anti-phishing techniques.

(a) Blacklisting: This is a technique that identifies

phishing websites by comparing URLs against a

database of known phishing sites, such as those

maintained by the Anti-Phishing Working Group

(APWG) and Phish Tank. Tools like Netcraft,

which operate on this method, rely on continually

updated blacklists sourced from spam emails and

other reports. However, the exponential rise in

phishing websites has rendered this approach

less efficient, as the sheer size of the blacklist

may lead to operational difficulties [15].

(b) Symptom-based anti-phishing techniques:

These focus on analyzing the content of

webpages, generating alerts based on the

detection of specific phishing indicators. Many of

these approaches leverage visual similarity

methods, such as document object model

comparisons, visual features, and CSS

characteristics, to identify phishing attempts.

While highly effective, this method requires

significant computational resources, making it

impractical for manual use and more suitable for

automated engines that deliver these services to

users [15].

(c) Content filtering: This is another anti-phishing

strategy, utilizes the content of emails or

webpages to detect phishing, often employing

advanced techniques like Bayesian statistics and

support vector machines (SVM). This approach,

though sophisticated, similarly demands

considerable computational power, particularly as

it integrates artificial intelligence methods [15].

(d) Domain binding: This is a browser-based

defense mechanism that associates sensitive

information with specific domains, alerting users

to the appropriate domain for that information.

Browser extensions, such as PhishDetect and

PhishDetector, have incorporated this technique.

B. Exixting Phishing Detction System

With the increase in phishing attacks, numerous
phishing detection systems have been developed to
counter these threats. Google Safe Browsing,
Symantec Norton Safe Web, and McAfee SiteAdvisor
are some of the existing phishing detection systems.
These systems utilize various detection techniques
and features to identify and protect users from
phishing attacks. For example, Google Safe Browsing
analyses web pages and generates lists of suspected
phishing and malware pages, while Symantec Norton
Safe Web provides website ratings based on security
and safety ratings. McAfee SiteAdvisor uses Global
Threat Intelligence (GTI) to catalog the reputations of
IP addresses around the globe. IP addresses
associated with phishing websites, sites infected with
malware, or otherwise malicious sites, have a ‘bad’
reputation in the GTI database. So, they’re blocked
from connecting to your PC and show up as risky
connections. It also blocks unsafe websites and lets
you know if a site is known for phishing or other
malicious activity. Table I shows a comparison
between the three existing phishing detection systems
discussed. It can be observed that the three
detection/prevention tools work on the same platforms
but differ in terms of the kind of security they provide
and the speed at which the detect/prevent phishing
pages. They all provide malware and phishing
protection.

C. Comparative Analysis of Existing Phishing Detection

System

Several techniques have been used for phishing
detection. These are rule-based, signature-based, and
machine/deep learning-based techniques. Rule-based
and signature-based techniques are based on
predefined rules and signatures to detect phishing
attacks, which can limit their effectiveness in detecting
new and previously unknown attacks. In contrast,
machine learning-based techniques, such as decision

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5711

TABLE I. COMPARISON BETWEEN GOOGLE SAFE BROWSING, MCAFFEE SITEADVISOR, AND NOETON SAFE WEB OF THE OVERALL PERFORMANCE

OF THE CLASSIFIERS.

Metrics Google Safe Browsing McAfee SiteAdvisor Norton Safe web

Security Real-time malware
detection

Real-time malware
detection and removal

Real-time dark web
monitoring and
malware detection

Phishing Protection Yes Yes Yes

Malware Protection Yes Yes Yes

Scan Speed Fast Slow Very fast

Browser Compatibility Firefox, Chrome,
Microsoft Edge and
Safari

Internet Explorer, Firefox
and Chrome

Chrome

Customer Support FAQs Phone, forums and
frequently asked
questions (FAQs)

24/7 live chat, phone
and FAQs

TABLE II. COMPARISON PHISHING DETECTION TECHNIQUES.

Technique Advantages Disadvantages

Rule-based Easy to implement and low false
positive rate

Low efficiency against new
phishing attacks

Signature-based High accuracy rate and low false
positive rate

Low efficiency against new
phishing attacks

Machine learning-based High accuracy rate and can detect new
phishing attacks

Requires large datasets for
training

trees (DT), random forests (RF), and support vector
machines (SVM), have shown promising results in
detecting new and previously unknown phishing
attacks. Rule-based techniques use a set of rules to
identify phishing emails. These rules are based on the
characteristics of phishing emails such as the
presence of certain keywords or phrases, suspicious
URLs, or attachments. Signature-based techniques
use a database of known phishing emails to identify
new phishing emails. These databases are created by
security experts who analyse phishing emails and
extract their signatures. Machine learning-based
techniques use algorithms to learn from a large
dataset of phishing and legitimate emails to identify
new phishing emails. These algorithms can be trained
using various machine learning techniques. In Table
II, a comparison of these techniques was presented.
As can be observed, the machine learning based
technique is preferable but requires a large dataset for
training.

Among the three phishing techniques, machine
learning-based detection technique has become a
popular approach for phishing detection due to its
ability to learn from previous attacks and identify new
and previously unknown attacks. Various machine
learning approaches, such as supervised and
unsupervised learning, have been employed for
phishing detection. For example, K-means clustering
has been used for unsupervised learning to cluster
phishing websites based on their characteristics in a
study by Sahu & Shrivastava [16]. On the other hand,
supervised learning algorithms such as logistic
regression and artificial neural networks have been

used for detecting phishing attacks with high accuracy
as used in a study by Shahrivari et al. [17].

D. Machine Learning Techniques for Phishing Detection

Machine learning (ML) algorithms are widely
utilized in phishing detection due to their ability to
process vast amounts of data and identify patterns
that may indicate malicious activity. Several popular
ML algorithms, including DT, RF, Naive Bayes (NB),
and SVM, have been applied to phishing detection,
each offering distinct strengths and limitations [18].
Decision trees are supervised ML algorithms that
classify data by recursively splitting the feature space,
forming a tree-like structure used for predictions. The
RF, an ensemble method, combine multiple decision
trees to enhance accuracy and reduce the risk of over
fitting. Studies have demonstrated the effectiveness of
these approaches in phishing detection. For instance,
Ahmadian et al. [19] used DT to classify phishing
URLs with an accuracy of 98.7%. The NB relies on
Bayes' theorem. It calculates the probability of a
sample belonging to a specific class based on its
feature values. SVMs, on the other hand, aim to find
an optimal hyperplane that separates the data into
distinct classes. Both algorithms have shown efficacy
in phishing detection. For example, Alhaisoni and
Khan [20] classified phishing emails using NB with
97.3% accuracy, while Singh et al. [21] applied SVMs
to phishing website detection, reaching 98.8%
accuracy. Hybrid models have also been proposed for
phishing attack detection [22]. Zhang and Li [23]
focuses on using machine learning algorithms to

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5712

detect phishing websites in real-time. In this study, a
support vector machine was utilized. The accuracy of
the developed system was analysed and the results
presented show that phishing websites are correctly
identified with a remarkable 97.3% accuracy. The
dataset used for training and testing the support
vector machine model consisted of 1,500 phishing
websites and 1,500 legitimate websites. It is unclear
where or how the authors obtained this dataset. In
Kaur and Kaur [24], the authors explore the use of
machine learning algorithms for phishing website
detection. Two machine learning algorithms namely;
DT and RF algorithms were investigated.
Experimental result found that the RF algorithm was
able to achieve a 96.3% accuracy rate. Gupta and
Jain [25] focus on the use of SVM algorithm for
phishing website detection. Experimental results
found that their system was able to achieve a 97.8%
accuracy rate. In Bhadoria and Singh [26], the
accuracy of two machine learning algorithms; RF and
SVM was investigated for phishing website detection.
The results obtained found that the RF algorithm was
able to achieve a high accuracy rate of 96.7%. A
comparative analysis of these machine learning
techniques highlights their respective strengths and
limitations in phishing detection. Singh et al. [27]
compared SVMs, DT, and RF, concluding that SVMs
were the most effective for phishing detection.
Ultimately, the effectiveness of any ML algorithm
depends on factors such as the dataset, selected
features, and the configuration of the algorithm itself.
Therefore, careful consideration is required when
choosing the most appropriate ML algorithm for
phishing detection tasks.

E. Deep Learning Techniques for Phishing Detection

Deep learning, a subset of machine learning, has
demonstrated significant promise in areas such as
image and speech recognition, natural language
processing, and anomaly detection. In the context of
phishing detection, deep learning techniques are used
by training models on large datasets of phishing and
legitimate websites to accurately differentiate between
them. Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) are among the
most popular deep learning methods applied to
phishing detection [28-30]. In CNNs, phishing
detection was achieved by extracting features from
webpage images to identify visual similarities
indicative of phishing attempts. Studies have shown
encouraging results in this regard. Korus et al. [31]
developed a phishing detection model combining
CNNs with decision trees, achieving high accuracy.
Nguyen et al. [32] designed a novel CNN architecture
to address imbalanced datasets in phishing detection,
employing convolutional layers with varying filter sizes
to enhance feature extraction. Zhu et al. [33]
introduced an improved CNN-based method that
incorporated both textual and visual features of
webpages, combining convolutional layers with
pooling layers to classify sites as phishing or
legitimate. In Kim et al. [34], the use of deep learning

model to detect phishing websites was presented. In
this study, a Convolutional Neural Network (CNN)
model was trained to classify websites as either
phishing or legitimate. Experimental results found that
the model had an accuracy of 98.2%. Similarly,
Ahmadi and Ghorbani [35] introduced a new approach
for detecting phishing websites by using deep learning
algorithms. The authors specifically utilized a Deep
Belief Network (DBN) model, which was able to
classify websites with an accuracy of 95.6%. RNNs,
on the other hand, excel in processing sequential
data, making them suitable for phishing detection by
modelling the flow of user interactions with websites.
By analyzing sequences like user keystrokes and
mouse movements, RNNs can detect patterns typical
of phishing attacks. For instance, Lee et al. [36]
proposed a phishing detection model using a
combination of RNNs and graph-based features,
achieving high accuracy. Mehmood et al. [37] similarly
applied RNNs with LSTM layers to email phishing
detection, using both textual and non-textual features
for classification. Pham et al. [38] further extended this
approach by integrating email content and metadata
features into their RNN-based model for phishing
detection. These studies underscore the potential of
RNNs in phishing detection, particularly when applied
to sequential and behavioral data.

The review of related studies has shown the
importance of continuing research in this domain.
Moreover, phishing techniques are continuously
evolving, with attackers utilizing new methods such as
social media, mobile devices, and machine learning-
based tactics. These emerging trends demand
advanced detection strategies capable of analyzing
diverse data sources and identifying subtle phishing
patterns. Addressing these challenges is crucial for
enhancing the effectiveness of phishing detection
systems in the face of evolving cyber threats.

III. RESEARCH METHODS

The Catch-Phish system architecture is shown in
Fig. 5. It consists of five key components, which work
together to detect phishing attempts across web
applications. The user can interact with the system via
either a web browser or a desktop application, both of
which are integrated with the API and application
logic. As shown in Fig. 5, a browser extension enables
seamless interaction between the web and desktop
platforms. The main components of the catch-phish
system include:

 PC: A personal computer is required to run Catch-

Phish, given its desktop application nature. It must

be equipped with a stable internet connection to

support the tool's functionality.

 Web Browser: As an essential part of the system,

the web browser is responsible for retrieving web

page files from servers and displaying them to

users. Catch-Phish monitors these webpages for

phishing and other security risks during browsing.

 UI/Frontend: The user interface is designed to be

intuitive and interactive, with a focus on creating

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5713

Web BrowserPC

UI API
Application

logic

UI API
Application

logic

Fig. 5. The catch-phish system architecture.

an easy-to-use and visually appealing experience
for users. It also manages interactions and state
updates.

 API: The API facilitates communication between

the desktop application and anti-phishing servers.

When a user encounters a potential phishing

webpage, the page contents are sent via API

requests to be analyzed for threats.

 Application Logic: This component ensures the

system's proper functioning, containing the logic

and instructions for system operation. It includes

API connection keys and processes user

interactions based on the analysis of API results.

A. System Development Tools

Catch-Phish was developed on an HP Folio 9480m
personal computer using different software tools. For
the Integrated Development Environment (IDE), a
simple but extensible text editor; the Visual Studio
Code (Microsoft, 2022b) was used because of its
easy-to-use environment and very good intelligence. It
is a code completion tool by Microsoft Inc. For the
Web Browser Extension/Plugin; The UI/Frontend was
developed using Bootstrap.js, created at Twitter. The
backend/application logic and API requests were
handled using the latest version of Vanilla JS also
referred to as pure JavaScript. This is a lightweight
and performant language developed for Netscape 2 to
build reusable and responsive web components. This
was used in combination with and JQuery; an open-
sourced JavaScript library that simplifies creation and
navigation of web applications. For the development
of the Desktop Application; the UI/Frontend was
developed using Electron.js. It is an open-source
runtime framework that allows the user to create
desktop-suite applications with HTML5, CSS, and
JavaScript. The backend/application logic was

developed using Node.js; an open-source JavaScript
runtime engine that makes it possible to make
asynchronous API requests due to its speed, easy
scalability and efficiency. IPQualityScore’s malicious
URL scanner API was used as the webpage risk
score assessment gateway in both applications of the
system to assess webpage contents and features for
internet security risks. GeoPlugin API was used to
retrieve the latest and relevant geographical location
information on domains and URLs fed into the
application.

Fig. 6 is a block diagram of the Catch-phish system
showing the relationship between the components of
the system. These are a web browser plugin, a
desktop application and IPQuality score’s malicious
URL scanner API.

Fig. 6. Relationship between blocsk in the catch-phish
sytem.

Requests to the API can be made from both the web
browser plugin and the desktop application while the

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5714

response from these requests made interflows
between the web browser interface and the desktop
application interface. The UML activity diagram of the
system is represented in Fig. 7. Based on the risk
assessment of the webpage/URL, a page is either
flagged as legitimate/safe or suspicious/phishing. No
cache is stored to ensure freshness on every activity.
This research utilized Bootstrap as the technology to
implement a user interface for the Web Browser
Extension. For security reasons, other frameworks like
React.js or Node.js cannot be used. A workflow for
how the plugin would function was initially created and
later improved based on the primary purpose of the
Catch-plugin plugin, which is to automatically check
for phishing and provide advisory on the current
webpage the user is on. Fig. 8 is a screenshot of the
plugin interface taken as it was being used on a
webpage linked to the Surfshark domain.

Fig. 7. UML activity diagram of the catch-phish system.

Fig. 8. The catch-phish plugin user interface.

The inclusion of a browser plugin in the Catch-Phish
system is driven by several factors that make it a vital
component for phishing detection. One of the primary
advantages is that browser plugins offer integrated
security policies and guides, providing an additional
layer of protection for users. It also allows for secure

background processes to be executed, making it ideal
for real-time monitoring of potential phishing threats
while users browse the web. Furthermore, browser
plugin enables easy addition of new features, thereby
expanding the system’s capabilities without requiring
significant modifications to the core architecture.

B. Creating a Browser Plugin

Before proceeding to create a browser plugin/add-
on/extension, a few things are required: Chrome Web
browser must be installed on the system with
developer mode enabled on it. Also, Node.js and NPM
must be installed in the system. The process to set up
involves using the workspace terminal in a text editor
like visual studio code to create a directory to house
the plugin development files. A JSON package file
(package.json), A JSON manifest file (manifest.json)
and an index HTML file (index.html) are the core
plugin development files that must be created for the
plugin to work as shown in Fig. 9. A brief description
of these files is presented.

Fig. 9. Folder structure of the plugin after setup.

The development of the Catch-Phish browser plugin
relies on several key files that define its structure and
functionality. The first essential file is the
package.json, which holds important metadata about
the project, such as the name, version, and
dependencies required for the plugin's development.
Notably, dependencies like Axios, webpack, and
webpack-cli are included to streamline and speed up
the development process. Another critical component
is the manifest.json file, which informs the browser
about the plugin’s behavior. It defines various
attributes such as the plugin's icon files, the HTML
and JavaScript files to be launched when the plugin is
activated, and the necessary permissions the plugin
will require from the user's browser to function
correctly. This file essentially serves as the blueprint
that enables the browser to understand and manage
the plugin.
Lastly, the Index HTML file plays a role in defining the
user interface or any front-end functionality. Unlike the
package.json and manifest.json files, the name of the
index file can be modified, but it must be referenced
correctly in the manifest file. This index file also allows
for linking to other HTML, CSS, and JavaScript pages,
enabling a flexible and dynamic user experience
within the plugin's design. Together, these files serve
as the foundation for building, deploying, and
maintaining the Catch-Phish browser plugin.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5715

C. Interface design

Fig. 10 shows the flow chart of the Catch-Phish
plugin. It shows each step that would be taken from
when users access the plugin. After the user installs
the catch-phish extension from the Chrome Web
Store, the user navigates to a website or clicks on a
link that may be a phishing attempt. The catch-phish
extension then analyses the URL and compares it to a
database of known phishing site. If the URL is
identified as a phishing attempt, the extension will
display a warning message to the user advising them
not to proceed to the website. If the user ignores the
warning and proceeds to the website, the extension
will continue to monitor the website and provide real-
time protection against phishing attempts. The
extension also allows users to report phishing
attempts and leave feedback to help improve the
system.

Fig. 10. Flow chart of the catch-phish browser
plugin.

The IPQuality Score’s malicious URL scanner API
plays a crucial role in the backend logic of the Catch-
Phish browser extension. This API is designed to

detect malicious URLs associated with phishing
campaigns, misleading advertisements, and malware.
It utilizes live threat intelligence feeds to identify zero-
day phishing links and suspicious behavior, scanning
URLs to uncover poor reputation domains and
phishing threats. Additionally, it can recognize parked
or hijacked domains, providing real-time intelligence
supported by advanced machine learning models, and
is straightforward to implement.
In the Catch-Phish plugin, the API is employed for
real-time phishing detection. If the API response
indicates that a URL is classified as phishing, users
are immediately warned against submitting any
information on that site. Conversely, if the URL is
deemed safe, the plugin generates a risk score based
on the API response. A score below 35% suggests
that the page likely lacks forms, advising users that it
is safe to input details but may still pose other risks,
such as SSL certificate expiration. A risk score above
35% without a phishing flag indicates that the domain
has exhibited malicious activity in the past 48 hours.
This prompts the users to be cautious and refrain from
entering sensitive information.

D. Cath-Phish Desktop Application

The Catch-Phish desktop application uses Electron.js
for both its backend and frontend implementation.
Electron.js is an open-source runtime framework built
on Node.js that facilitates building desktop
applications with HTML5 and CSS DOM elements by
Cheng Zhao, an engineer at Github Inc. Fig. 11
illustrates a preview of what the Catch-Phish desktop
application looks like on launch. Electron.js is a
preferred framework for developing the Catch-Phish
desktop application due to its flexibility in designing
user interfaces, allowing for limitless aesthetics. It
enables developers to maintain a single JavaScript
codebase, facilitating the creation of cross-platform
applications compatible with Windows, macOS, and
Linux without requiring native development.

Electron.js comprises three primary components:
Chromium, Node.js, and custom APIs as shown in
Fig. 12. Chromium is responsible for rendering and
displaying web content, allowing access to all browser
APIs and development tools akin to those found in
Google Chrome. Node.js provides access to system
capabilities, enabling interactions with the filesystem
and operating system functionalities. Additionally,
Electron.js includes custom APIs that facilitate the
creation of common desktop experiences, making it
easier for developers to implement features such as
context menus, desktop notifications, and keyboard
shortcuts.

E. The Main and Renderer Processes

A running Electron.js app maintains two types of
processes, the Main process, and one or more
Renderer processes. Fig. 13 visualizes how these two
process types relate to each other. The entry point of
an Electron.js application is the Main process, which
is simply a Node.js environment. This is where all the

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5716

Fig. 11. The catch-phish plugin user interface.

Fig. 12. Structure of an electron.js application.

Fig. 13. Relationship between electron.js main process and

renderer processes.

interaction with native functionality occurs. The Main
process is responsible for creating web pages. It does
this by creating a new instance of the Electron.js
Browser Window object. This creates a new web page
that runs in its own Renderer process.
The Main process can create more than one web
page each running in its own Renderer process.
Typically, Electron.js applications boot up with a
default web page which is the app’s start-up screen.
More screens can be created if the application
requires them. Each Renderer process manages its
web page and is completely isolated from other
Renderer processes and the Main process itself.
Thus, if one Renderer process terminates, it does not
affect another Renderer process. A Renderer process
can also be terminated from the Main process by

destroying its Browser Window instance. Out of the
box, the Renderer process only has access to
browser APIs like the window and document objects.
This is because the Renderer process is simply a
running Chromium browser instance. It can, however,
be configured to have access to Node.js APIs such as
process and require. Oftentimes, one may want to use
native functionality in an Electron.js application in
response to events, like a user clicking a button.
However, because the Renderer process and the
Main process are completely isolated from each other,
native functionality cannot be accessed directly from
the web page. To make this possible, Electron.js
provides an Inter-process communication (IPC)
channel that allows the Renderer process to
communicate with the Main process and vice-versa as
shown in Figure 13. Using the ipcMain and
ipcRenderer modules for the Main process and
Renderer process respectively, it is possible to emit
events from one process and listen for events in the
other process. It is also possible to pass data from
one process to another.

F. The Backend/Application Logic

The backend logic of the Catch-Phish desktop
application focuses on detecting malicious sites using
IPQS live URL scanning through on-demand API
requests. The URL scanning API evaluates a valid
URL and returns over 20 data points that summarize
its associated risk level. Additionally, geolocation data
can be retrieved using the IP address obtained from
the first API response. Both API requests operate
asynchronously to enhance efficiency, with an 'await'
clause ensuring the second request waits for the first
response. It's important to note that the desktop
application does not generate user advisories since
users are not actively submitting details while using
the application. Instead, it provides comprehensive
insights, allowing users to make informed decisions.
For instance, a domain's age and risk score are
presented, highlighting potential concerns if the
domain is less than a week old with a risk score

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5717

TABLE III. IPQS MUS API ADDITIONAL REQUEST OPTIONS.

Method Value Example

GET key ?key=YOUR_API_KEY_HERE&url=https%3A%2F%2Fgoogle.com

POST key key=YOUR_API_KEY_HERE&url=https%3A%2F%2Fgoogle.com

Header IPQS-KEY
(Additional
parameters
passed as either
GET or POST)

IPQS-KEY: YOUR_API_KEY_HERE

TABLE IV. IPQS MUS API ADDITIONAL REQUEST PARAMETERS.

Field Description Possible Values

strictness How strictly IPQS scans the URL? Stricter checks may provide a
higher false-positive rate. IPQS recommends defaulting to level
"0", the lowest strictness setting, and increasing to "1" or "2"
depending on your levels of abuse.

integer (0-2)

Fast When enabled, the API will provide quicker response times using
lighter checks and analysis. This setting defaults to false.

boolean, string (true or
false)

timeout The maximum number of seconds to perform live page scanning
and follow redirects. If your implementation requirements do not
need an immediate response, we recommend bumping this value
to the default value of 2 seconds.

integer (1-10)

greater than 0%. Ultimately, the application displays
the risk score and domain age of the entered URL or
domain without issuing direct warnings. The backend
process for handling user input and fetching results in
the Catch-Phish desktop application is outlined as
follows:
The requested URL for fetching results using the
Axios utility in Electron is structured as:
https://ipqualityscore.com/api/json/url/YOUR_API_KE
Y_HERE/URL_HERE.
When a user inputs a domain or full URL into the
application, it must be URL encoded for proper
processing. This is achieved using the code:
Await_fetch("https://ipqualityscore.com/api/json/url/AP
I_KEY_HERE/"+encodeURIComponent(USER_URL_I
NPUT));.
There are also alternative options for submitting
requests to the IPQS API, particularly when platform
requirements or frameworks necessitate not including
the API key in the URL. Instead, the API key can be
transmitted through GET, POST, or Headers, utilizing
the specified endpoints as illustrated in Table III.
Custom tracking variables (such as "userID", and
"transactionID") established in the developer account

settings can be passed with each API request. This
allows IPQS reporting tools to filter by specific users,
products, campaigns, transactions, etc. so that it can
easily match up records with the system to identify
fraudulent activity. Additional request parameters
were not used in the Catch-Phish Desktop application
because they were not deemed needed. Table IV
gives a detailed desiption and possible values of
additional request parameters the IPQS MUS API
allows.

G. Response Field Definition

The Malicious URL Scanner API returns many
data points so that business logics can make the best
decisions for their audiences. Analysing the overall
Risk Score is usually the best way to determine
domain reputation and the overall scoring confidence
level. When this value is 100, there is 100% confirmed
activity of phishing, malware, or similar abuse.
Suspicious URLs can be identified with the
"suspicious" data point or by analysing Risk Scores
(30 – 80). URLs or domains with Risk Scores ≥ 85 are
suspicious and likely to be a poor reputation domain

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5718

or malicious URL. Risk Scores ≥ 85 have been
classified by IPQS deep machine learning as
suspected of phishing, malware activity, or similar
type of abuse. Risk Scores of 100 will provide
confirmation the URL is accurately classified as a
malicious link. It is recommended to block or flag a
URL as malicious using a combination of the "risk
score", "phishing", "malware", "suspicious", "parking",
and "spamming" variables.

IV. VALIDATION RESULTS AND DISCUSSIONS

The browser plugin and desktop application in the
Catch-Phish system was tested against various
webpages and domains. Storage use and network
performance of the browser plugin is also monitored
using Chrome DevTools which is built directly into the
Google Chrome browser, while for the desktop
application, the Windows Task Manager is used. The
first section defined the dataset used for testing and
which metrics were of importance in the system’s
evaluation. Thereafter, the system is evaluated based
on the selected metrics. Then, the results were
analysed.

A. Dataset and Setup

The dataset used to test the Catch Phish system
are based on the statistics gathered by PhishTank
which contains URLs suspected or verified to contain
phishing webpages submitted by different users.
Testing CatchPhish applications focused on the
dataset from recent submissions on PhishTank. At the
time of this test, the phishing validity of some of the
URL submissions used for testing were unknown
while others were verified as phishing pages on Phish
tank. The URL of the Google homepage was also
used as input in the test to see if both applications
have the problem of generating false positives. The
datasetused for all tests were collected on the 27

th
 of

March, 2023 at 11:18 pm and on 7
th
 of April, 2023 at

11:42 am from PhishTank using random selection. An
overview of the input data and test results is given in
Table V.

By defining the dataset, it becomes clear that the
metrics required to verify the results must be
determined. The system’s goals are to collect and
analyse the contents, features and patterns of
webpages to detect security risks in them, especially
phishing. The accuracy of the result is determined by
checking if the results of Catch-Phish applications
(Phishing status and risk score) match the phishing
validity on PhishTank.

In the summary of phishing detection test result,
69.5% (16) of the total 23 URLs used as a dataset to
test the Cath-Phish system's accuracy and reliability in
identifying real phishing webpages were confirmed as
authentic phishing pages by Catch-Phish, while 60.8%
(14) were confirmed as such by PhishTank. The test
results show that the system achieved 95.6% (22)
accurate results and that Catch-Phish is more
effective at identifying phishing websites, even zero-
day websites, as it was able to authenticate certain

URLs that had just been submitted (and were as-yet-
unverified) to PhishTank. Due to the fact that it did not
classify secure websites as phishing websites, the
Catch-Phish can also be used to prevent false
positives.
Normally, caching would be the best mode of
optimization for both applications. In the context of this
study, not enabling caching was the best way to
optimize it. Caching would prevent fresh rendering of
response every time a request is made so it was
avoided to be able to catch zero-day phishing pages
in real-time. Also, very few resources that had nothing
to do with API responses (like icons and images) were
used to prevent extended load time.

B. Testing the System

The system was tested using the data sets
previously defined, and subsequent visualizations on
the browser plugin and desktop application are shown
in Fig. 14 and Fig. 15 respectively. In Fig. 14, when
the plugin was used a webpage on the
‘kalashpayments.com’ domain which is a payment
platform, the risk score was 61% which raises
suspicion. When used on the ‘mettechmetal.com.tr’
domain that webpage was found to be a phishing
page by all metrics as the risk score was 100. The
webpage on ‘google.com’ domain revealed safe
browsing activity. More insight on a particular
webpage is displayed to the user as depicted in Fig.
15. A webpage might not be a phishing page but can
have other risks like invalid or outdated domain
certificates making such a page prone to man in the
middle attacks. The user can deduce more about a
page from the domain age, page size, content type
etc. even though the system might not out rightly flag
that page as suspicious or a phishing page.

C. Detection Speed

Google DevTools which is built into the Google
Chrome web browser was used to get detailed insight
into the performance of the Catch-Phish plugin in
terms of time to load (speed). Fig. 16 reveals that
when the time to load of the browser plugin was
tested, the API request made to IPQS MUS took the
most time (3.68 seconds) to respond. The total time it
took for the system to respond and display the results
was 3.69 seconds implying that the API request and
response is responsible for 99.7% of the process time.
It also implies that the plugin is very fast especially for
one that does not implement caching.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5719

TABLE V. URLS/WEBPAGES CONSIDERED FOR VALIDATION.

ID Phish URL Submitted PhishTank
Valid?

Catch-Phish
Valid?

8093670 https://kalashpayments.com/bancadigitaloccidentaal/index
.html

added on Mar 27th 2023 10:08 PM

by lhernandez Unknown VALID PHISH

8093663 https://mettechmetal.com.tr/index2.html
added on Mar 27th 2023 10:03 PM

by soclatam VALID PHISH VALID PHISH

NA https://google.com/ NA INVALID INVALID

8109274 https://blazej.szymonpa.pl/a1legro/email@example.com...
added on Apr 7th 2023 10:12 AM

by Amarena98 Unknown VALID PHISH

8109273 https://regvc.vqkxqmw.cn/
added on Apr 7th 2023 9:57 AM

by Micha VALID PHISH VALID PHISH

8109272 https://iyhgh.acabe.cn/
added on Apr 7th 2023 9:57 AM

by Micha VALID PHISH VALID PHISH

8109271 https://trgmh.kegesi.cn/
added on Apr 7th 2023 9:56 AM

by Micha VALID PHISH VALID PHISH

8109270 https://ytutf.fj1144.cn/
added on Apr 7th 2023 9:55 AM

by Micha VALID PHISH VALID PHISH

8109269 https://jycv.qaxuacl.cn/
added on Apr 7th 2023 9:55 AM

by Micha VALID PHISH VALID PHISH

8109268 https://sdbs.life/
added on Apr 7th 2023 9:42 AM

by WilliamSeah VALID PHISH VALID PHISH

8109267 https://galxe.cash/airdrop/
added on Apr 7th 2023 9:31 AM

by phishb8 Unknown Unknown

8109266 https://docs.google.com/presentation/d/e/2PACX-1vS-
y9Mpzj-xETvkl6dpp5d...

added on Apr 7th 2023 9:03 AM

by verifrom VALID PHISH VALID PHISH

8109265 https://eur02.safelinks.protection.outlook.com/?url=https://
docs.googl...

added on Apr 7th 2023 9:03 AM

by verifrom Unknown Offline

8109264 https://reglement-amendegouvcom.fr/
added on Apr 7th 2023 8:57 AM

by Nameshield Unknown INVALID

8109263 http://pecaruba070423.servequake.com/
added on Apr 7th 2023 8:50 AM

by D3Lab VALID PHISH VALID PHISH

8109262 https://www.smbc-cacd.ccm.ijwempw.cn/
added on Apr 7th 2023 8:49 AM

by soclatam VALID PHISH VALID PHISH

8109261 https://www.smbe-carb.ccm.aia82.top/
added on Apr 7th 2023 8:49 AM

by soclatam VALID PHISH VALID PHSIH

8109260 http://400517034274668.sepa-00980-force-
drop.oa.r.appspot.com/?fbclid=...
added on Apr 7th 2023 8:41 AM

by kkalmus Unknown Offline

8109259 https://hghsociety.com/wp-content/upgrade/godrts/...
added on Apr 7th 2023 8:38 AM

by GovCERTCH VALID PHISH VALID PHISH

8109258 https://fragmentwalls.com/20bc23528edfb3741e0ad75d0c
dbe336...

added on Apr 7th 2023 8:36 AM

by GovCERTCH Unknown Unknown

8109257 http://m.cashwire.com/qban.xx?dXdWdhcc89ytcxLPFcGc
R7cycBGprf77Wcbbb4P...

added on Apr 7th 2023 8:36 AM

by GovCERTCH VALID PHISH VALID PHIHS

8109256 https://ip-178-118-29-33.main.jp/Paket-id-
28193/Seleccione_medio_de_pa...

added on Apr 7th 2023 8:36 AM

by GovCERTCH Unknown INVALID

8109255 https://116.62.202.222/
added on Apr 7th 2023 8:32 AM

by WilliamSeah VALID PHISH VALID PHSIH

http://www.jmess.org/
https://phishtank.org/phish_detail.php?phish_id=8093670
https://phishtank.org/user.php?username=lhernandez
https://phishtank.org/phish_detail.php?phish_id=8093663
https://phishtank.org/user.php?username=voldemor
https://phishtank.org/phish_detail.php?phish_id=8109274
https://phishtank.org/user.php?username=Amarena98
https://phishtank.org/phish_detail.php?phish_id=8109273
https://phishtank.org/user.php?username=Micha
https://phishtank.org/phish_detail.php?phish_id=8109272
https://phishtank.org/user.php?username=Micha
https://phishtank.org/phish_detail.php?phish_id=8109271
https://phishtank.org/user.php?username=Micha
https://phishtank.org/phish_detail.php?phish_id=8109270
https://phishtank.org/user.php?username=Micha
https://phishtank.org/phish_detail.php?phish_id=8109269
https://phishtank.org/user.php?username=Micha
https://phishtank.org/phish_detail.php?phish_id=8109268
https://phishtank.org/user.php?username=WilliamSeah
https://phishtank.org/phish_detail.php?phish_id=8109267
https://phishtank.org/user.php?username=phishb8
https://phishtank.org/phish_detail.php?phish_id=8109266
https://phishtank.org/user.php?username=verifrom
https://phishtank.org/phish_detail.php?phish_id=8109265
https://phishtank.org/user.php?username=verifrom
https://phishtank.org/phish_detail.php?phish_id=8109264
https://phishtank.org/user.php?username=Nameshield
https://phishtank.org/phish_detail.php?phish_id=8109263
https://phishtank.org/user.php?username=D3Lab
https://phishtank.org/phish_detail.php?phish_id=8109262
https://phishtank.org/user.php?username=soclatam
https://phishtank.org/phish_detail.php?phish_id=8109261
https://phishtank.org/user.php?username=soclatam
https://phishtank.org/phish_detail.php?phish_id=8109260
https://phishtank.org/user.php?username=kkalmus
https://phishtank.org/phish_detail.php?phish_id=8109259
https://phishtank.org/user.php?username=GovCERTCH
https://phishtank.org/phish_detail.php?phish_id=8109258
https://phishtank.org/user.php?username=GovCERTCH
https://phishtank.org/phish_detail.php?phish_id=8109257
https://phishtank.org/user.php?username=GovCERTCH
https://phishtank.org/phish_detail.php?phish_id=8109256
https://phishtank.org/user.php?username=GovCERTCH
https://phishtank.org/phish_detail.php?phish_id=8109255
https://phishtank.org/user.php?username=WilliamSeah

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5720

Fig. 14. Catch-Phish plugin visualizations (a) suspected but unverified phishing webpage (on kalashpayments.com) (b) verified

phishing webpage (on mettechmetal.com.tr) (c) phish-free webpage (on google.com).

Fig. 15. Catch-Phish desktop application visualizations (a) suspected but unverified phishing webpage (on kalashpayments.com)

(b) verified phishing webpage (on mettechmetal.com.tr) (c) phish-free webpage (on google.com).

Fig. 16. Google Devtools network analysis.

http://www.jmess.org/

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5721

V. CONCLUSIONAND FUTURE STUDIES

Phishing is one of several types of cyber-attacks
that use fraudulent web pages that appear legitimate
to deceive users. Several approaches have been
developed to detect this attack with varying level of
success. In this study, a new phishing-detection
system is proposed. The system is built as a desktop
application using Electron.js, integrating both the
frontend and backend, with the Google Maps API
utilized for domain location visualization. The frontend
of the web browser application was developed using
Bootstrap, while Node.js served as the backend. Both
applications interact with IPQualityScore’s Malicious
URL Scanner API, leveraging machine learning
algorithms and querying up-to-date databases of
phishing URLs to detect webpage risks and zero-day
phishing threats. The design adheres to software
engineering principles and best practices, ensuring
accessibility and strong performance. Extensive
testing was conducted on the developed system,
applying it to multiple datasets. Experimental results
demonstrated that automated and real-time detection
of phishing attempts is feasible. The dataset used for
testing comprised 20 phishing websites and 3
legitimate ones, with the system achieving an 80%
accuracy rate in detecting phishing websites and
100% accuracy in identifying legitimate ones. Overall,
the Catch-Phish system accurately classified 22 out of
23 URLs tested, resulting in an impressive overall
accuracy of 95.6%. This affirms the system's potential
to enhance internet security and accountability
through automated phishing detection and information
gathering. It is important to mention that the analysis
and visualization of risk scores for URLs and
webpages not hosted online may lead to misleading
results; therefore, it is crucial for users to test against
accessible websites to avoid false positives. This
forms a potential future study.

REFERENCES

[1] R. Alabdan. “Phishing attacks survey: Types,
vectors, and technical approaches,” Future
Internet, vol. 1, pp. 1-38, 2020.

[2] Wallarm Inc (2023). What is phishing attack?
Types and examples. [Online]. Available from:
https://www.wallarm.com/what/types-of-phishing-
attacks-and-business-impact. Accessed:
[12/04/2023].

[3] J. Aljabri, N. Alzaben, N. NEMRI, S. Alahmari,
S.D. Alotaibi, S. Alazwari, A.O. Khadidos, and
A.M. Hilal. “Hybrid stacked autoencoder with
dwarf mongoose optimization for phishing attack
detection in internet of things
environment,” Alexandria Engineering Journal,
vol. 106, pp. 164-171, 2024.

[4] N. Kamble, and N. Mishra. “Hybrid optimization
enabled squeeze net for phishing attack
detection,” Computers & Security, vol. 144, p.
103901, 22024.

[5] A.K. Yamarthy, and C. Koteswararao.
“MDepthNet based phishing attack detection
using integrated deep learning methodologies for
cyber security enhancement,” Cluster
Computing, vol. 27, pp. 6377–6395, 2024.

[6] E. Benavides-Astudillo, W. Fuertes, S. Sanchez-
Gordon, D. Nuñez-Agurto, and G. Rodríguez-
Galán. “A phishing-attack-detection model using

natural language processing and deep
learning,” Applied Sciences, vol. 13, pp. 1-23,
2023.

[7] M.W. Shaukat, R. Amin, M.M.A. Muslam, A.H.
Alshehri, and J. Xie. “A hybrid approach for
alluring ads phishing attack detection using
machine learning,” Sensors, vol. 23, pp. 1-27,
2023.

[8] Anti-Phishing Working Group. (2020). Phishing
activity trends report, 1st Quarter 2020. Online.
Available from:
https://docs.apwg.org/reports/apwg_trends_report
_q1_2020.pdf. Accessed: [29/03/2023].

[9] H. Mohammad, and A. Gulzar. “A multivocal
literature review on growing social engineering
based cyber-attacks/ threats during the covid-19
pandemic: Challenges and prospective solutions,”
IEEE Access, vol. 9, pp. 7152-7169, 2021.

[10] X. Xu, Y. Liu, and Y. Xu. “Detecting phishing
websites using visual similarity based on visual
cryptography,” Journal of Internet Technology, vol.
8, pp. 865-872, 2017.

[11] I. Bulakh. “Phishing: current state of problems and
ways of combating it,” In: proceedings of the IEEE
9

th
 International Conference on Dependable

Systems, Services and Technologies, 24-27 May,
Kyiv, UA, pp. 216-220, 2018.

[12] European Union. (2016). General Data Protection
Regulation (GDPR). Online. Available
from:https://eurlex.europa.eu/legalcontent/EN/TXT
/PDF/?uri=CELEX:32016R0679&from=EN.
Accessed: [27/03/2023].

[13] K. Sood, P. Bansal, and A. Abraham. “A survey
on phishing detection techniques,” Journal of
Network and Computer Applications, vol. 127, pp.
59-76, 2019.

[14] R. Arora, and N. Arora. “Phishing attack
techniques,” International Journal of Computer
Science and Technology, vol. 5, pp. 4-6, 2014.

[15] B. Amro, A.H. Abusabha, I.I. Najjar, and A.H.
Quneibi. “PAPG – Personalized anti-phishing
guard,” International Journal of Computing and
Network Technology, vol. 7, pp. 8-9, 2019.

[16] K. Sahu, and S. Shrivastava. “Kernel k-Means
clustering for phishing website and malware
categorization,” International Journal of Computer
Applications, vol. 111, pp. 20-25, 2015.

[17] V. Shahrivari, M. Darabi, and M. Izadi. “Phishing
detection using machine learning techniques,”
arXiv preprint arXiv:2009.11116, 1-9, 2009.

[18] A. Basit, M. Zafar, X. Liu, A.R. Javed, Z. Jalil, and
K. Kifayat. “A comprehensive survey of AI-
enabled phishing attacks detection
techniques,” Telecommunication Systems, vol. 76,
pp. 139-154, 2021.

[19] A. Ahmadian, M. Abadi, and M. Shamsfard. “A
novel algorithm for phishing URL classification,”
Journal of Ambient Intelligence and Humanized
Computing, vol. 11, pp. 4359-4371, 2020.

[20] A.M. lhaisoni, and S. Khan. “Phishing detection
using machine learning classifiers,” International
Journal of Advanced Computer Science and
Applications, vol. 10, pp. 101-105, 2019.

[21] A. Singh, A. Rathi, and P. Sharma. “Phishing
website detection using machine learning,”
International Journal of Engineering and
Advanced Technology, vol. 10, pp. 1133-1137,
2021.

[22] M.W. Shaukat, R. Amin, M.M.A. Muslam, A.H.
Alshehri, and J. Xie. “A hybrid approach for
alluring ads phishing attack detection using
machine learning,” Sensors, vol. 23, pp. 1-27,
2023.

[23] Y. Zhang, and L. Li. “Real-time phishing website
detection based on a machine learning

http://www.jmess.org/
https://www.wallarm.com/what/types-of-phishing-attacks-and-business-impact
https://www.wallarm.com/what/types-of-phishing-attacks-and-business-impact
https://docs.apwg.org/reports/apwg_trends_report_q1_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q1_2020.pdf
https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

Journal of Multidisciplinary Engineering Science Studies (JMESS)

ISSN: 2458-925X

Vol. 10 Issue 12, December - 2024

www.jmess.org

JMESSP13420991 5722

algorithm,” Journal of Network and Computer
Applications, vol. 154, p. 102662, 2020.

[24] R. Kaur, and G. Kaur. “Phishing website detection
system using machine learning algorithms,”
International Journal of Engineering &
Technology, vol. 8, pp. 74-80, 2019.

[25] A. Gupta, and A. Jain. “Real-time phishing
website detection using support vector machine,”
In: Proceedings of the 2020 International
Conference on Computing, Communications and
Networking Technologies (ICCCNT), 1-3 July,
Kharagpur, India, pp. 1-7, 2020.

[26] S. Bhadoria, and N. Singh. “Real-time phishing
website detection using machine learning
algorithms,” In: Proceedings of the 2020
International Conference on Innovations in
Computer Science and Engineering (ICICE), 28-
29 August, Hyderabad, pp. 1-7, 2020.

[27] A. Singh, A., Rathi, and P. Sharma. “Phishing
website detection using machine learning,”
International Journal of Engineering and
Advanced Technology, vol. 10, pp. 1133-1137,
2021.

[28] Z. Alshingiti, R. Alaqel, J. Al-Muhtadi, Q.E.U. Haq,
K. Saleem, and M.H. Faheem. “A deep learning-
based phishing detection system using CNN,
LSTM, and LSTM-CNN. Electronics, vol. 12, p.
232, 2023.

[29] R. Zaimi, M. Hafidi, and M. Lamia, “A deep
learning approach to detect phishing websites
using CNN for privacy protection,” Intelligent
Decision Technologies, vol. 17, pp. 713-728,
22023.

[30] C. Kunndra, A. Choudhary, J. Kaur, A. Jogia, P.
Mathur, and V. Shukla. “NTPhish: A CNN-RNN
hybrid deep learning model to detect phishing
websites,” In International Conference on
Cryptology & Network Security with Machine
Learning, Springer Nature, Singapore, pp. 587-
599, 2023.

[31] P. Korus, P. Wroblewski, and K. Dembczynski.
“Combining convolutional neural networks and

decision trees for improved phishing detection,”
In: proceedings of the 35

th
 ACM/SIGAPP

Symposium on Applied Computing, March 30 -
April 3, Brno, CZ, pp 1046-1053, 2020.

[32] T.V. Nguyen, H.T. Pham, and T.H. Nguyen. “A
real-time phishing website detection system using
deep learning and blockchain,” In: proceedings of
the International Conference on Advances in
Computer Science and Information Technology,
June 27-28, Copenhagen, DK, pp. 1-7, 2020.

[33] X. Zhu, L. Li, and Y. Shen. “An improved phishing
detection method based on convolutional neural
network,” in Proceedings of the IEEE International
Conference on Artificial Intelligence and Computer
Applications, Guangzhou, China, pp. 10-14, 2020.

[34] H. Kim, H. Park, and K. Lee. “A real-time phishing
website detection system using deep learning,”
Computers & Security, vol. 77, pp. 138-149, 2018.

[35] N. Ahmadi, and A. Ghorbani. “A new approach to
detect phishing websites using deep learning
algorithms,” Journal of Ambient Intelligence and
Humanized Computing, vol. 10, pp. 221-230,
2019.

[36] J. Lee, S. Park, M. Kim, and B. Kang. “Phishing
detection with recurrent neural networks and
graph-based features,” Applied Sciences, vol. 11,
p. 3229, 2021.

[37] S. Mehmood, M. S. Khalid, and S. Saeed.
”Detecting phishing emails using recurrent neural
networks,” in Proceedings of the IEEE
International Conference on Computing,
Mathematics and Engineering Technologies
(iCoMET), Sukkur, Pakistan, pp. 1-6, 2020.

[38] T. Pham, T. Nguyen, and T. Nguyen, “Phishing
emails detection based on recurrent neural
network,” in Proceedings of the International
Conference on Advanced Computing and
Applications (ACOMP), Ho Chi Minh City,
Vietnam, pp. 110-114, 2021.

http://www.jmess.org/

