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Abstract—The Internet of Things (IoT) has seen 
widespread deployment due to its capability to 
offer seamless connections. However, because of 
its innate security architecture, the IoT is currently 
experiencing an increase in attacks. One of the 
most prevalent attacks against IoT systems is the 
distributed denial of service (DDoS) attack. In this 
paper, we investigate DDoS attack detection for 
the IoT using machine learning and deep learning. 
Three classifiers; multi-layer perceptron (MLP), k-
nearest neighbors (k-NN), and deep neural 
network (DNN) were developed for attack 
detection. Unlike previous studies, we 
investigated these models considering both 
binary and multiclass classifications. The 
performance of these models in both 
classifications was verified using the CICIDS 2017 
and Bot-IoT datasets. Experimental results show 
that the performance of the models is incredible 
for multiclass classification compared to binary 
classification. We are able to show that by using 
such multiclass classification, the accuracy of the 
models can be improved and effective detection 
for IoT networks can be achieved. For the 
CICIDS2017 dataset, all the models recorded 
accuracy close to 100%. The MLP has 99.984% 
accuracy, while k-NN and DNN record 99.994% 
and 99.987% accuracy, respectively. The detection 
accuracy for binary classification is also superb 
for both MLP and k-NN. However, we noticed that 
the DNN doesn’t seem to be an excellent model 
for DDoS prediction when binary classification is 
considered. 

Keywords—attack detection; cyber attack; 
DDoS; IoT; machine learning 

I.  INTRODUCTION  

Over the last few years, the use of the internet and 
internet-enabled applications has increased 
dramatically and has become more indispensable to 
today's generation. Many modern smart devices are 
now internet-enabled and linked to the internet via IoT. 
The IoT is a platform that enables a network of linked 
devices to connect to the internet and communicate 
with each other. IoT has become more popular today 
due to the increase in the number of devices linked to 

the internet. It is predicted that this trend will continue 
in the years to come. Since 2015, billions of IoT 
devices have been connected globally [1]. By 2025, 
there will be more than 75 billion linked IoT devices in 
use according to the forecast published in [2]. The IoT 
and other internet-enabled networks have recently 
emerged as one of the enabling technologies that have 
been implemented in a variety of applications [3, 4]. 
Due to the inherent security issues connected with IoT 
devices, the use of IoT in many of these applications 
has generated a great deal of controversy. Most IoT 
devices feature web interfaces that do not demand the 
use of secure passwords. Some of them continue to 
provide access to people who have repeatedly failed to 
log in. As a result, these interfaces are vulnerable to 
several attacks. Most IoT devices lack access control, 
have insecure default passwords, and use unprotected 
credentials. As a result, an attacker could take 
advantage of this to compromise data integrity and 
privacy.  

DDoS is a set of well-organized attacks launched 
remotely using distributed botnet computers in a 
network. A botnet is a massive network of hundreds or 
thousands of hacked machines that can be remotely 
controlled and that are used to attack a specific server 
or network [5]. In a DDoS attack, numerous devices 
attack a single server or network. These attacks are 
executed with networks of internet-connected 
devices—including PCs and other devices (such IoT 
devices) that have become infected with malicious 
software and are thus susceptible to remote 
manipulation. These devices are known as bots. Once 
a botnet has been established, the attacker can direct 
the attack by sending remote commands to each bot. 
Each of the bots in the botnet sends queries to the IPs 
of the victim's server while it is being targeted by the 
botnet which may overwhelm the network and disrupt 
legitimate traffic. Each bot is a real internet device 
which makes it challenging to differentiate between 
attack and legitimate traffic. Since a DDoS attackers 
initiate an attack via a botnet; therefore, the 
architecture of a DDoS attack will consist of an 
attacker, botnet, and the target network or server. In a 
decentralized DDoS architecture shown in Fig. 1, the 
bots establish a peer-to-peer (P2P) network. An attack 
query is sent to a certain bot to start the DDoS attack. 
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The commands are then forwarded by this bot through 
P2P to other bots in the network. 

 
Fig. 1.  Architecture of a DDoS attack [6]. 

 

 
Fig. 2.  Larget HTTP DDoS attack recorded by year [7]. 

DDoS attacks are frequently launched on target 
networks with high volumes of traffic. A report 
presented in [7] revealed that during the 4

th
 quarter of 

2023, more than 200 million request per second has 
been sent by attackers using the HTTP request to 
flood the victim server (see Fig. 2).  
Despite persistent efforts to prevent, detect, and 
mitigate DDoS attacks on IoT networks, these 
destructive attacks remain prevalent. Therefore, 
finding solutions to this problem continues to be a 
critical challenge in the field of network security. Due 
to the significant effect of these attacks, it is crucial to 
develop an efficient attack detection method. In the 
past, several methods have been proposed with 
varying degrees of effectiveness. Among these 
methods, machine learning are major participants and 
are currently being employed due to their ability to 
learn traffic and attack features and have been used 
to predict DDoS attacks. In this paper the potential of 
three machine learning models (MLP, k-NN, and 
DNN) for predicting DDoS attacks in IoT networks is 
presented. The performance of these models was 
demonstrated using the CICIDS 2017 and Bot-IoT 
datasets. The key contributions of this research are as 
follows: 

 Unlike other studies [8-12], experiments and 
analyses were performed with a focus on both 
binary and multiclass classification and 
compared the potential of these models under 
each classification scenario.  

 In this study, we verify the effect of 
classification scenarios on the performance of 
these models, and we are able to show that 

the DNN doesn’t seem to be a good model for 
DDoS prediction when binary classification is 
considered. 

The rest of the paper is organized as follows: Section 
2 presents the attack detection methods and a review 
of related research studies. Section 3 shows the 
methodology of this research, while Sections 4 and 5 
present the results and conclusion, respectively. 

II. LITERATURE REVIEW 

There are several methods used for the detection 
of DDoS attacks in IoT networks. These attack 
detection methodologies are classified as traditional 
methods, signature-based detection, and anomaly-
based detection. The Traditional methods concentrate 
on measuring the traffic volume. When the measured 
traffic volume exceeds a predetermined level, a DDoS 
attack is identified [6]. The traditional detection 
methods suffer from high false alarm rate and low 
detection accuracy, thus, are seldom used.  For the 
signature-based detection, attack signatures stored in 
a database are utilized to find attacks. This is 
achieved by tracking traffic patterns and comparing 
them to pre-existing signatures. Once a disparity is 
detected between the previously recorded patterns 
and the incoming pattern, this is indicated as indicated 
as malicious traffic. The method has high accuracy in 
detecting known attacks, provided the database is 
updated. The major challenge with this method is that 
only attacks whose signatures have been previously 
stored in the database can be detected. The anomaly 
based method are mostly used for attack detection in 
IoT due to their ability to detect unknown and zeroday 
attacks. This is achieved by identifying anomalous 
circumstances caused by the attack. 

Statistical methods such as entropy analysis [13-
15] and machine learning (ML) methods

 
[8-12] are 

typically utilized in the anomaly detection approach. 
Entropy-based DDoS attack detection methods 
strongly depend on the use of thresholds to achieve 
the desired detection results. In most cases, it is hard 
to choose the right detection threshold in various 
attack environments due to the changing nature of 
network traffic patterns and rising attack intensities. 
To improve on this limitation, machine learning 
techniques are currently being used because they can 
learn the characteristics of traffic and create a very 
precise model for identifying anomalous traffic 
features. 

Moore and Zuev [16] utilize Bayesian techniques to 
classify internet traffic patterns for DDoS attack 
detection. The method records a relatively low 
detection accuracy of 60%. In [17], network traffic 
samples were collected via sflow protocol from 
network devices. These samples were classified using 
a random forest (RF) classifier. The network traffic 
was compared to signatures collected earlier from 
network traffic samples to achieve attack detection. 
The method was via datasets that comprised of the 
CIC-DoS, CICIDS2017, and CICIDS2018. The reults 
obtained revealed that a 96% detection rate, a 
relatively high level of precision, and a low false alarm 
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rate were achieved. In [18], the authors employ SVM 
for DDoS attack detection in an SDN-based IoT 
network. In this study, a routine collection of network 
packets was conducted. From this, 24 features were 
extracted. The SVM is then used to categorize these 
features to detect abnormalities. The method was 
validated through the NSL–KDD dataset, and its 
performance was compared to that of the J48 and 
Naïve Bayes (NB) classifiers. The result obtained 
record a detection accuracy of 99.4%, compared to 
99.75% and 95.87% for the J48 and NB algorithms, 
respectively. It can be shown that the J48 
classification method continues to perform better in 
terms of accuracy than the suggested approach. The 
method also has a significant processing overhead. 
Similarly, the authors [19] use SVM to classify 
additional traffic features that are periodically obtained 
from a flow table. These are aggregated features that 
pertain to DDoS attacks. They include the speed of 
the source IP and port, the speed of flow entries, the 
standard deviation of the flow bytes and packets, and 
the ratio of pair–flow. The validity of the approach was 
verified by simulation. Evaluation results show that a 
detection rate of 95.24% was achieved, even with a 
small amount of flow data. The method does, 
however, record some false alarms. The average 
false alarm rate generated was 1.26%. 

In Chen et al. [20], a DT classifier was employed 
for DDoS attack detection in a multi-layer IoT 
environment. Experimental results show that ICMP 
flooding, SYN flooding, and UDP flooding were 
detected with 97.39% accuracy and an F1-score 
above 97%. Mihoub et al. [21] proposed attack 
detection and mitigation architecture for IoT networks 
using machine learning. In this study, a multi-class 
classifier was developed using DT, RF, k-NN, multi-
layer perception (MLP), RNN, and LSTM to classify 
the extracted features from the BoT–IoT dataset. This 
classifier follows the looking-back idea, where the 
sub-categories of the attacks are also localized. 
Evaluation results show that looking-back-enabled RF 
has the highest accuracy, while the lowest is observed 
with the k-NN under the same concept. The authors of 
[22] implemented k-NN, SVM, NB, DT, RF, and LR 
machine learning algorithms in WEKA tools to analyse 
their detection performance using the CICDDoS2019 
datasets. Evaluation results show that both DT and 
RF record the highest accuracy, while the NB has the 
lowest detection accuracy. Nevertheless, the DT has 
superior performance in terms of processing time. The 
DT classifier requires 4.53 s to process the data, 
whereas the RF classifier needs roughly 84.2 s. 

The authors of [23] analysed the potential of SVM, 
MLP, DT, and RF classifiers for attack detection in a 
simulated SDN environment using Scapy tool with a 
list of valid IPs. Results show the superiority of the RF 
over other classifiers in terms of detection accuracy. 
The DT, however, has a quicker processing time. The 
primary drawback of this study is that all traffic was 
generated artificially and that some traffic 
characteristics, including IP, protocols, and packet 
size, were randomly selected. The choice of these 

features was not discussed. Additionally, these 
features were insufficient to provide successful 
detection performance. 

In [10], RF, C5.0, NB an SVM classifiers were used 
for attack prediction in IoT network using the 
CICIDS2017 dataset. A detection accuracy of 86.8%, 
86.5%, 80% and 79.9% for RF, C5.0, NB and SVM 
respectively was achieved. In [11], the authors 
proposed the use of DT classifier for attack detection 
in IoT network using the CICIDS2017 dataset. In this 
study, a detection accuracy of 96.36% and processing 
time of 16.58 secs were achieved. In [13], a DT and 
SVM classifier were used for attack prediction using 
the same dataset used in previous studies [10, 11] 
with 98.98% and 97.97% accuracies for DT and SVM 
classifiers respectively. These studies, however, 
focused only on binary classification. Similarly, a 
binary classification study was presented in [12] with 
the same dataset to train a RF classifier for attack 
detection in IoT network. The result obtained show 
that an accuracy of 99.79% was achieved with the RF 
classifier. Other studies [24-26] considered multiclass 
classification with varying accuracy level. The study in 
[24] considered multiclass classification with the use 
of DNN. When validated using the CICDDoS 2019, an 
accuracy of 94% was recorded. In [26], SVM, NN, J-
48 and RF were used to predict DDoS attacks in IoT 
network. In this study, SVM record 88.5%, NN with 
99.4%, J-48 with 99.7% and RF with 99.7% 
accuracies. 

III. RESEARCH METHODS 

Fig. 3 represents the block diagram of the 
methodology used in this paper. In this study, we have 
used two datasets: the CICIDS2017 [27], and Bot-IoT 
dataset [28]. These data were pre-processed using a 
variety of methods. This included the removal of null 
values from the datasets, and then balancing and 
normalization techniques were applied to scale and 
balance the dataset. At the feature ranking stage, the 
best features were extracted from the dataset. The 
data was then divided into 30% for testing and 70% 
for training sets. The testing set is used to evaluate 
the models, while the training set is used to train the 
k-NN, MLP, and DNN classifiers.  

A. Data pre-processing 

 CICIDS2017 data processing 

 The CICIDS2017 dataset contains benign 
(normal) and the most updated attacks in pcap and 
csv file formats. It includes the result of network 
traffic analysis using CICFlowmeter, with the flows 
labelled based on the time stamp, source and 
destination IPs, source and destination ports, 
protocols, and attack. The dataset is available in 
eight different csv files, and each file contains a 
different attack. The 8 files were concatenated 
using the Python Pandas data frame. Pre-
processing is done on the dataset to improve its 
suitability for the classifier. Null entry removal, data 
balance, label encoding, and normalization are all 
steps in this process. The dataset consists of 
2,830,743 rows with 78 attributes and a column for 
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Fig. 3. Block diagram of the research methodology. 

 

Fig. 4. Target data distribution in the CICIDS2017 dataset for (a) binary classification, (b)multiclass classification. 

class label. First, the Pandas libraries were used to 
import and concatenate the dataset csv files. The 
dataset was condensed to 890,353 entries in order 
to increase computational capacity, and after that, it 
was verified for null entries that might have an 
impact on the models' performance. The dataset’s 
null entries were removed, leaving 889842 rows 
and 78 attributes in the final dataset. The dataset 
columns were found to have some unidentified 
characters, so these unidentified characters were 
eliminated from the column names. Due to the 
dataset's imbalance, several attack types, 
particularly those from minority classes, were 
combined to create new attack types. This is to 
minimize the imbalance in the dataset. In this study, 
we categorize the attack features in the dataset 
using both binary and multiclass classification. The 
dataset contains attack types such as Dos_Hulk, 
PortScan, DDoS, DoS_GoldenEye, FTPPatator, 
SSHPatator, DoS_Slowloris, DoS_Slowhttptest, 
Heartbleed, Bot, Web_Attack_Brute_force, 
Web_Attcack_XSS, Web_Attcack_Sql_Injection, 
and Infiltration. For multiclass classification, these 
attack types were grouped together and classify 

each entry into eight operational states, with attack 
types represented as either “normal (benign or no 
attack)”, “port scan”, “DoS”, “DDoS”, “brute force”, 
“botnet”, “web attack”, and “infiltration”. The binary 
classification categorized the features for each 
entry as either normal (no attack) or abnormal 
(attack) by creating a binary label, and the values 
for the column label were populated using the 
NumPy library in Python. The data is visualized, 
and the distribution of data for both classifications is 
illustrated in Fig. 4. 

 Bot-IoT data processing 

  This dataset is one of the newest utilized for 
attack detection in IoT networks. It was generated 
by designing a realistic network environment in the 
Cyber Range Lab at UNSW Canberra. It contains a 
combination of simulated and real-world settings 
and more than 72 million records. It consists of 
benign and four categories of attacks, but most of 
the dataset contains packets of the DoS and DDoS 
types. More information about the dataset can be 
found in [29]. For the sake of training and validating 
machine learning models through a binary 
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classification, attack instances in the dataset are 
labelled with a '1', whereas benign (normal) 
instances are labelled with a '0'. For multiclass 
classification, we have four major attack categories 
represented as DoS, DDoS, reconnaissance, and 
information theft, plus a benign. Each of the attack 
categories also has sub-categories. Both DoS and 
DDoS have TCP, UDP, and HTTP; reconnaissance 
has OS fingerprints and service scanning; and 
information theft has key logging and data 
exfiltration. Fig. 5 visualizes the distribution of the 
normal and attack classes in the Bot-IoT dataset for 
both classifications. As attack classes make up a 
considerable percentage of the data set while 
regular traffic is significantly underrepresented, this 
highlights the extreme imbalance in the dataset. It 
is important to note that, as suggested by [27], we 
extracted 5% of the initial data using select MySQL 
queries because the produced dataset is 
enormous, with more than 72.000.000 records and 
16.7 GB for CSV and 69.3 GB for pcap. Koroniotis 
et al. [28] suggested the 5% subset as a more 
manageable and condensed form. It comprises 
about 3.6 million records totaling about 1.07GB. 
When it comes to the attack category, it is a 
representative sample of the entire collection. 

B. Normalization 

Normalization aims to scale down features to a 
similar scale. This is accomplished by using (1) to 
scale down the dataset so that the normalized data 
falls between 0 and 1 without affecting the normalcy of 
the data's behaviour.  

)min()max(

)min(

xx

xx
x







         (1) 

where x is the original feature value, x


 is the 
normalized feature value, and min(x) and max(x) are 
the minimum and maximum values of each original 
feature, respectively. Since both binary and multiclass 
classifications were considered, two data frames were 
created, one for each of them. The “label” attribute, 
which is classified into “normal” and “abnormal”, was 
encoded using the label encoder for binary 
classification data frames and is represented as “0” for 
normal and “1” for abnormal. For the multiclass 
classification data frame, the “attack_cat” attribute, 
categorized into the eight operational states (for the 
CICIDS2017 dataset) and five (BoT-IoT), is encoded 
using labelEncoder() and also one-hot encoded.  
 

C. Feature ranking 

Feature extraction was done for both binary 
classification and multiclass classification, which had 
80 and 88 columns, respectively, including the class 
label for the CICIDS2017 dataset. A correlation matrix 
is used as a tool for feature extraction, whereby a 
subset of features (i.e., variables) are chosen from a 
larger set of features in a dataset to enhance the 
performance of a machine learning model. A 
correlation coefficient for each pair of features in the 
dataset was estimated using the Pearson correlation 
coefficient (PCC) illustrated in (2). 
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In (2), rxy denotes the correlation coefficient between 
variables x and y, xi and yi denote the values of the x-

variable and y-variable in a dataset, x and y  denotes 

the mean of the values of the x and y variables while n 
is the size of the dataset. 
    In this study, the PCC was adopted because it’s 
very fast and one of the widely used for estimating the 
relationship between variables. The idea is that the 
features with the lowest correlation coefficient would 
introduce less ambiguity in the dataset. A correlation 
matrix was created and visualized as a heatmap, 
which highlights the pairs of features that are highly 
correlated with each other. A correlation matrix that 
shows the correlation coefficient between the features 
of the data frame used for binary classification and 
that used for multi-class classification is shown in Fig. 
6, for the CICIDS2017 dataset. The correlation 
coefficient has a value that ranges from -1 to 1. If the 
value is -1, then there is a perfect negative correlation, 
meaning that as one variable increases, the other 
decreases. When both variables increase as one 
does, there is a perfect positive correlation with a 
value of 1. In the absence of a linear relationship 
between the two variables, a value of 0 denotes no 
correlation. 
The attributes that have less than a 0.5 correlation 
coefficient with the target attribute were selected, 
while the rest were dropped. After the feature 
extraction, the data frame for binary data contains 20 
attributes and a class label, whereas the multiclass 
data frame has 22 attributes and a class label for the 
CICIDS2017 dataset. For the Bot-IoT dataset, the 5% 
subset has the most features of any processed set or 
subset of Bot-IoT, with 43 independent features and 3 
dependent features. Five CSV files, each with a 
header row with feature names, make up the 5% 
subset. There are 46 features present in this dataset. 
After feature ranking, we have a total of 19 features, 
which consist of flgs, proto, pkts, bytes, state, dur, 
mean, stddev, sum, min, max, spkts, dpkts, sbytes, 
dbytes, rate, srate, drate, and class. These features 
are used to train the classifiers. 

D. Data splitting 

In this stage, the normalized data is divided into 
two parts. This was achieved by randomly dividing the 
set into training and test sets. In this study, 70% of the 
data was used for training and 30% for testing. The 
training set is used to train the model, while the testing 
set is used to evaluate the model's prediction. 

E. Classification and prediction 

Classification uses a dataset or set of observations 
to categorize fresh data into one of several categories. 
At this stage, we develop three machine learning 
classifiers: MLP, k-NN, and DNN.  
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Fig. 5. Target data distribution in the CICIDS2017 dataset for (a) binary classification, (b)multiclass classification. 

 

Fig. 6. Heatmap of feature correlation matrix for the CICIDS2017 dataset for (a) binary classification (b) multiclass 
classification. 

 
70% of the dataset was applied to train these 
classifiers, which are used to classify and predict 
DDoS attacks in the dataset. 

F. Experimental setup 

The simulations were carried out in Python 3.0. 
The data processing and evaluation were 

implemented by extension packages including 
NumPy, Pandas, and Scikit-learn. For DNN 
implementation, the Keras library was used, while 
Scikit-learn was used for MLP and k-NN. The MLP 
and DNN have three hidden layers with ReLU 
activation function. The output layer is made up of a 
single unit that uses the Softmax activation function 
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for multiclass classification and the sigmoid activation 
function for binary classification. The loss function 
used was cross-entropy. This involved using 
categorical cross-entropy for multiclass classification 
and binary cross-entropy for binary classification. 
Finally, we used the Adam optimizer to update 
network weights, 100 epochs, and batch size of 128, 
and a learning rate of 0.0011. For the k-NN classifier, 
we set k = 10. Also, the Euclidean distance is a widely 
used distance metric and was adopted in this study. 
Each of the classifiers was trained and tested to 
predict DDoS attacks, considering both binary and 
multiclass classifications. In binary classification, the 
value of the attack is predicted as either normal or 
abnormal. The results of the model predictions were 
compared against the actual values of the particular 
entry. All experiments were carried out on a HP 
ProBook running Windows 10, a 64-bit operating 
system. The processor was an Intel Core i7 3.60 GHz 
CPU equipped with 8 GB of RAM. 

G. Performance evaluation 

The performance of the classifiers was assessed 
using accuracy, precision, recall and f1-score metrics. 
Accuracy: This metric determines the percentage of 
accurate predictions across all the cases considered. 
The detection accuracy (DA) is expressed using (3). 

NNPP

NP
A

FTFT

TT
D




           (3) 

In (3), TN stands for true negative and signifies the 
number of instances of normal traffic that the 
detection method correctly classifies as belonging to 
the normal class, FN denotes false negative indicating 
the number of instances of attack traffic that are 
identified as normal traffic, and true positives (TP) 
signifies number of attack instances accurately 
categorized, whereas false positives (FP) signifies 
number of instances of normal traffic that are wrongly 
classified as attack instances. 
Precision: It is an estimate of the proportion of positive 
patterns in a positive class that are successfully 
predicted out of all the anticipated patterns. The 
precision (P) is expressed as 

PP

P

FT

T
P


         (4) 

Recall (R): It measures the proportion of positive 
patterns that are classified properly. It is expressed as 

NP

P

FT

T
R


        (5) 

F1-score: This is a popular metrics for imbalance 
data. It denotes the harmonic mean between R and P 
results. It is expressed as 

PR

PR
scoreF






2
1       (6) 

This means that a model will have a high F1-score if 
both the precision and recall are high and vice versa. 

IV.  RESULTS AND DISCUSSIONS 

In this section, we show the performance of the 
models when applied to the CICIDS2017, and Bot-IoT 
datasets. Thus, we discuss the evaluation results of 
the models under each dataset. 

 

A. CICIDS2017 dataset 

Fig. 7 shows the precision results of the three 
models for both binary and multiclass classifications 
using the CICIDS2017 dataset. It is observed that the 
three models have excellent performance for 
multiclass scenarios, whereas during binary 
classification, only the DNN model's performance is 
degraded. Under this classification, it records the least 
precision out of the three models, while the precision 
result for k-NN clearly shows its superiority above 
others. Nevertheless, the precision results of the three 
models improve during multiclass classification, where 
the DNN shows a significant improvement of 6.12%. 
For the multiclass case, the precision result of both k-
NN (99.991%) and DNN (99.985%) is slightly better 
than that of MLP (99.984%), although the 
improvement can be considered insignificant with only 
a difference of less than 0.01% observed. 

Fig. 8 shows the accuracy of the three models 
during training and testing for both binary (Fig. 8(a)) 
and multiclass (Fig. 8(b)) classifications for the 
CICIDS2017 dataset. As can be noticed in Fig. 8(a), 
k-NN is the most performing model with an accuracy 
of 99.649%, while MLP is second on the list with 
97.869% accuracy during training. During testing, both 
models recorded an accuracy of 99.547% and 
97.881%, respectively. Out of the three models, the 
DNN has the least accuracy during binary 
classification. However, when multiclass classification 
is considered, as shown in Fig. 8(b), there is a 
significant improvement in the accuracy performance 
of the DNN. Its accuracy of 99.987% and 99.985% is 
slightly greater than that of MLP and a bit lower than 
the accuracy recorded by the k-NN (99.994% and 
99.991%) during both training and testing. The DNN 
achieves about 6% improvement in accuracy when 
multiclass classification is considered. For k-NN and 
MLP, only 0.35% and 2.12% improvement over the 
accuracy produced from binary classification were 
observed when multiclass classification was 
considered, respectively. Among the three algorithms, 
k-NN records the best accuracy (although just a slight 
improvement above MLP) during both classification 
scenarios. In this analysis, the DNN doesn’t seem to 
be a good model for DDoS prediction when binary 
classification is considered. 

 
Fig. 7. Precision of the three models using the CICIDS2017 
dataset for both binary and multiclass classification. 
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Fig. 8. Classification accuracy of the three models using the CICIDS2017 dataset for both binary and multiclass classification. 

 
In Fig. 9, the result of the recall for the three models 
for both binary and multiclass classifications using the 
CICIDS2017 dataset is presented. Similar to the 
results presented in Fig. 7, the three models 
performed better for multiclass scenarios only for 
DNN, whose recall performance is reduced in binary 
classification. Under this classification, it records the 
lowest recall value out of the three models. Similar to 
Fig. 7, its performance was improved by 6.12% in the 
multiclass scenario. 

 
Fig. 9. Recall of the three models using the CICIDS2017 
dataset for both binary and multiclass classification. 

 
In Fig. 10, the result of the F1-score for the three 
models for both binary and multiclass classifications 
using the CICIDS2017 dataset is presented. This also 
supports the results presented in Figs. 8 and 9. For 
multiclass classification, these results revealed that 
the performance of the DNN is superb. However, 
during binary classification, its performance is slightly 
affected and may not be proposed for prediction in 
binary classification.  Fig. 11 illustrates the ROC curve 
for the three classifiers using the CICIDS2017 
dataset. By observing Fig. 11 and comparing the ROC 
curve, we can deduce that k-NN has better capability 
to distinguish between attack instances and normal 
ones with 99.523% of the AUC, while MLP also 

records a superb performance with 97.685% of the 
AUC. This result shows that k-NN can excellently 
predict the attack in this dataset. The capability of the 
DNN classifier in this regard slightly reduces with a 
record 92.868% AUC.  

 
Fig. 10. F1-score of the three models using the CICIDS2017 
dataset for both binary and multiclass classification. 

  
Fig. 11. ROC curve of the three models using the 
CICIDS2017 dataset for both binary and multiclass 
classification. 
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Fig. 12. Classification accuracy of the three models using the BoT-IoT dataset for both binary and multiclass classification. 

B. BoT-IoT dataset 

Fig. 12 shows the accuracy of these models during 
training and testing for both binary (Fig. 12(a)) and 
multiclass (Fig. 12(b)) classifications. As can be 
noticed in Fig. 12(a), both MLP and k-NN are the most 
accurate models with an accuracy of 99.862% and 
99.861% during training, while DNN records the least 
performance with 94.752% accuracy. Out of the three 
models, the DNN has the least accuracy during binary 
classification. However, when multiclass classification 
is considered, as shown in Fig. 12(b), there is a 
significant improvement in the accuracy performance 
of the DNN. An improvement of 5.23% in accuracy is 
observed when multiclass classification is considered. 
During both training and testing, its accuracy of 
99.984% and 99.983% is slightly lower than that of 
MLP and k-NN, though only a less significant 
difference can be observed. The results obtained for 
this dataset also revealed that the DNN doesn’t seem 
to be a good model for DDoS prediction when binary 
classification is considered. 
Fig. 13 shows the precision results of the three 
models for both binary and multiclass classifications 
using the Bot-IoT dataset. It is observed that the three 
models have excellent performance for multiclass 
scenarios, whereas during binary classification, the 
performance of DNN is reduced. Under this 
classification, it records the least precision. Similar to 
the results presented in Fig. 12, the DNN achieves 
about 5% improvement in precision when multiclass 
classification is considered. However, the precision 
results recorded by MLP and k-NN slightly reduce with 
0.02% for MLP and 0.08% for k-NN when multiclass 
classification is considered. This may also be because 
the dataset is highly imbalanced, which may affect the 
performance during a multiclass scenario. This does 
not significantly degrade their precision results. For 
this dataset, the precision result of the k-NN is 
relatively better than that of MLP and DNN 
considering multiclass classification, while that of DNN 
is slightly better than the precision recorded by the 
MLP model. However, this analysis also revealed that 
the DNN seems not to be a good model for DDoS 
prediction when binary classification is considered. 

 
Fig. 13. Precision of the three models using the BoT-IoT 
dataset for both binary and multiclass classification. 

 
The recall for the three models for both binary and 
multiclass classifications using the Bot-IoT dataset is 
shown in Fig. 14. Like the results shown in Fig. 13, the 
three models performed better in multiclass scenarios 
only for DNN, whose recall performance is reduced in 
binary classification. However, in a multiclass 
scenario, the performance of DNN was enhanced by 
4.96%. The k-NN, with a recall value of 99.967%, and 
the DNN (99.881%), have relatively better recall 
values in a multiclass scenario than the MLP 
(99.867%). Even though there isn't much of a 
difference between them in this instance, the k-NN 
nevertheless records the best precision results in a 
multiclass scenario, although in a binary classification, 
MLP has a slight advantage over the k-NN in terms of 
the recall value. In Fig. 15, the result of the F1-score 
for the three models for both binary and multiclass 
classifications is presented. This also supports the 
ones presented in Fig. 13 and Fig. 14. This result 
further demonstrates that the DNN should not be 
considered for attack prediction when binary 
classification is used. 
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Fig. 14. Recall of the three models using the BoT-IoT dataset 
for both binary and multiclass classification. 

 

 
Fig. 15. F1-score of the three models using the BoT-IoT 
dataset for both binary and multiclass classification. 

Fig. 16 illustrates the ROC curve for the three 
classifiers using the Bot-IoT dataset.  
 

 
Fig. 16. ROC curve of the three models using the BoT-IoT 
dataset for both binary and multiclass classification. 

By observing Fig. 16 and comparing the ROC curve, it 
is can be seen that both k-NN and MLP have better 
capability to distinguish between attack instances and 
normal ones with 99.888% and 99.861% of the AUC, 
respectively. Thus, both k-NN and the MLP can 
excellently predict the attack in this dataset. The 
capability of the DNN classifier in this regard slightly 
reduces with 95.33% of the AUC. 

V.  CONCLUSIONAND FUTURE STUDIES 

With technology advancing so quickly, the IoT is 
becoming increasingly exposed and a target for 
attackers. DDoS attacks differ from other types of 
attacks in that they are challenging to prevent 
because they show no evidence of device failure. 
Many strategies have been put forth for timely 
detection of this attack. Among others, machine and 
deep learning approaches are major participants due 
to their ability to learn traffic features and have been 
successful in accurately predicting attacks. In this 
paper, three classifiers (MLP, k-NN, and DNN) were 
developed and their potential for attack detection 
examined, considering both binary and multiclass 
classifications. The assessment findings allow us to 
demonstrate that multiclass classification can greatly 
increase the detection accuracy of these models on a 
balanced or nearly balanced dataset. However, for 
highly imbalanced datasets, the performance of the 
models is observed to be reduced. While the detection 
accuracy of these models is also good for binary 
classification, it has been noticed that the DNN 
doesn’t seem to be a good model for DDoS prediction 
when binary classification is considered. Overall, the 
results are encouraging and may open the door for 
the future development of an ensemble classifier 
using hybrid MLP and k-NN as robust detection 
models that will be applied to other IoT-based 
datasets that contain new variants of DDoS attacks. 
The ensemble classifier will be further incorporated 
into the attack mitigation algorithm to have a robust 
intrusion detection and mitigation system. 
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