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Abstract— It is note that contemporary 

mathematics is cornerstone of engineering 

science and technology and vice versa. It turns 

out that there exist enormous number of universal 

formulas for taking definite integrals by hand. It is 

shown that square-root differential operator gives 

rise the definite probabilistic measure. 

Complicated second order differential equations 

depending many parameters are considered.  

Fractional derivatives are also played an 

important role in mechanics and engineering. 

 

Keywords Infinite number of universal formulas for 

taking definite integrals. Mellin representation, square-

root differential operator, probabilistic measure, 
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I. INTRODUCTION  
For all time, pure human brain product-mathematics 

plays a vital role in our civilization. Developments of 

natural science, engineering science and technology 

give rise absolutely new branch  of mathematics and 

vice versa. Simple example is that the Dirac delta 

function 𝛿(𝑥),  

∫ 𝑑𝑥𝑓(𝑥)𝛿(𝑥) = 𝑓(0)

∞

−∞

                    (1) 

arisen from quantum mechanics [1,2,3] is base of 

generalized functions and functional integrals [4,5] 

which are widely used in quantum physics [6,7] and 

the string theory [8,9,10]. Other example is that the 

group theory [11], especially 𝑈(3) × 𝑆𝑈(2)  – gauge 

group [12] gives rize the quantum field theory [13,14], 

in particular it’s the standard model [15,16]. 

 The Lorentz transformations, vector and 

tensor [17] calculations in the curvilinear spacetime 

are base of the Einstein theory of special and general 

theories of gravitation [18]. 

 At the same time, geometric [19] and 

algebraical theories play an important role in the 

axiomatic approach in the quantum field theory [20] 

and even more in the proof of the Ferma math 

theorem [21].  

 Contemporary fine instrumental laser, high 

technology and engineering science allow us to carry 

out very high precision measurements in physics. 

Striking examples are that the detection of 

gravitational waves [22,23], correlation of two photons 

interactions at large distances (action at distances) 

named entanglement process [24,25] and very fine 

accuracy measurements of leptons anomalous 

magnetic moments [26,27]. So that all these are the 

best experimental measurements and theories 

physicists have ever done. 

 Here, notice that disagreement 𝑎𝜇
𝑒𝑥𝑝

− 𝑎𝜇
𝑠𝑚 

between theoretical calculations in the standard model 

and the experimental data for the muon anomalous 

magnetic moment is easily solved within the 

framework of the nonlocal theory and the existences 

of photino [28]. 

 Even more, we believe that in near future the 

Hawking thermal radiation [29,30] will be detected, 

which may be played an important role in 

understanding structure of the universe in deeply. In 

this review paper we consider some beauties of 

mathematics. 

 

II. BEAUTY OF INTEGRAL CALCULUS 

 

 Since from Isaac Newton and Gottfried 

W.Leibniz’s time integral and differential calculus play 

a vital role in science and human knowledge about 

nature and society. It is well known that taking 

integrals encounter some difficulties with respect to 

differentiation with respect to arbitrary functions. 

However, it turns out that accidentally there exist an 

enormous number of universal formulas for taking 

integrals for sign variables functions, like sinx, cosx, 

exp(-x
n
) and etc. Recently, by using the Mellin 

representation, we have obtained around three 

hundred universal formulas [31,32] for taking integrals 

by hand. Here, there are some examples: 
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a. Universal formula 1 

𝐼1 = ∫ 𝑑𝑥 𝑥𝛾𝑠𝑖𝑛𝑚(𝑏𝑥𝜐)

∞

0

= 

1

2𝑚−1
𝑁𝑚 (𝜉 = −

1

2
[1 +

1 + 𝛾

𝜈
]) (

2

𝑏
)

1+𝛾
𝜈

 

×
√𝜋

2𝜈
 
Г [
1
2
(1 +

1 + 𝛾
𝜈

)]

Г (1 −
1 + 𝛾
2𝜈

)
,                        (2) 

where  

𝑁1 = 1,𝑁3(𝜉) = 3 − 3
1+2𝜉 , 

 𝑁5(𝜉) = 5
1+2𝜉 − 5 ∙ 31+2𝜉 + 10 

𝑁7(𝜉) = −7
1+2𝜉 + 7 ∙ 51+2𝜉 −

21∙31+2𝜉+35 

etc. 

1.  ∫ 𝑑𝑥 
𝑠𝑖𝑛𝑏𝑥

√𝑥
= √

𝜋

2𝑏

∞

0

 .                       (3) 

2.  ∫ 𝑑𝑥 
𝑠𝑖𝑛7𝑏𝑥

√𝑥
=

∞

0

 

     
1

64
√
𝜋

2𝑏
 (−√7 + 7√5 − 21√3

+ 35).                     (4) 

3.  ∫ 𝑑𝑥 
𝑠𝑖𝑛3𝑏𝑥

𝑥19 20⁄
=

∞

0

 

     
√𝜋

8
 (
2

𝑏
)
−9 10⁄ Г (

1
20
)

Г (
29
20
)
 (3 − 39 10⁄ )       (5) 

4.  ∫ 𝑑𝑥 𝑠𝑖𝑛(𝑏𝑥2) =
1

2
√
𝜋

2𝑏
          (6)

∞

0

 

5.  ∫ 𝑑𝑥 
𝑠𝑖𝑛𝑏𝑥80

𝑥41
=
1

40
√
𝜋𝑏

2
          (7)

∞

0

 

6.  ∫ 𝑑𝑥 
𝑠𝑖𝑛7𝑏𝑥−1

𝑥
= −

5𝜋

32
             (8)

∞

0

 

7.  ∫ 𝑑𝑥 
𝑠𝑖𝑛𝑏𝑥60

𝑥21
= 

∞

0

 

√𝜋

120
(
2

𝑏
)
−1 3⁄ Г (

1
3
)

Г (
7
6
)
                   (9) 

8.  ∫ 𝑑𝑥 
𝑠𝑖𝑛7𝑏𝑥5

𝑥
=
𝜋

32
       (10)

∞

0

 

b. Universal formula 2 

 

𝐼2 = ∫𝑑𝑥 (1 − 𝑥
𝜎)𝜇

1

0

𝑠𝑖𝑛𝑚[𝑏(1 − 𝑥𝜎)𝜆] 

=
𝑏

2𝑚−1
 
1

2𝑖𝜎
∫ 𝑑𝜉

𝑏2𝜉

𝑠𝑖𝑛𝜋𝜉Г(2 + 2𝜉)
𝑁𝑚(𝜉)

−𝛽−𝑖∞

−𝛽+𝑖∞

× 

𝐵 (
1

𝜎
, 1 + 𝜇 + 𝜆 + 2𝜆𝜉),                 (11) 

where 𝑚 = 1,3,5… ,−1 < 𝛽 < 0. 

9.  ∫ 𝑑𝑥 (1 − 𝑥2)𝑠𝑖𝑛𝑚[𝑏(1 − 𝑥2)−1 2⁄ ] 

∞

0

 

   

=   
𝜋𝑏

2

1

2𝑚
[𝑁𝑚(0)

−
1

3
𝑏2𝑁𝑚(1)

+
1

12
𝑏3𝑁𝑚 (

3

2
)] +       

     
𝑏√𝜋

2𝑚
∑(−1)𝑛
∞

𝑛=2

𝑏2𝑛+1

(2 + 2𝑛)! (
1
2
− 𝑛)

× 

   𝑛 
Г (
1
2
+ 𝑛)

𝑛!
𝑁𝑚 (𝑛 +

1

2
)                 (12) 

 

c. Universal formula 3 

𝐼3 = ∫ 𝑑𝑥 𝑥𝛾
∞

0

𝐽𝜎(𝑏𝑥
𝜈) = 

1

2𝜈
(
𝑏

2
)
−
1+𝛾
𝜈
 

Г (
1 + 𝛾 + 𝜈𝜎

2𝜈
)

Г (1 + 𝜎 −
1 + 𝛾 + 𝜈𝜎

2𝜈
)
,  

𝑏 > 0                       (13) 

10.  ∫ 𝑑𝑥 𝑥−1𝐽2(𝑏𝑥
2) =

1

4
                  (14)

∞

0

 

11.  ∫
𝑑𝑥 

1

𝑥2
𝐽2(𝑏𝑥

2) =
4𝜋

5
√𝑏 

1

Γ2 (
1
4
)
,

𝑏 > 0               (15)

∞

0
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d. Universal formula 4 

 

𝐼4 = ∫ 𝑑𝑥 𝑥𝛾 (𝑒−𝑏𝑥
𝜌
)
𝑒𝑎𝑥

𝜈

=

∞

0

 

1

𝜈
 
1

2𝑖
∫ 𝑑𝜉

Г (
1 + 𝛾 + 𝜌𝜉

𝜈
)

𝑠𝑖𝑛𝜋𝜉Г(1 + 𝜉)
×

−𝛽−𝑖∞

−𝛽+𝑖∞

 

𝑏𝜉[−𝑎𝜉]−
1+𝛾+𝜌𝜉

𝜈                      (16) 

12.  ∫ 𝑑𝑥  (𝑒−𝑏𝑥
2
)
𝑒𝑎𝑥

2

=

∞

0

 

       
1

2√𝑏
∑

(−1)𝑛

𝑛!
Г (
1

2

∞

𝑛=0

+ 𝑛) [
𝑎 (𝑛 +

1
2
)

𝑏
]

𝑛

 ,                (17) 

where limit 𝑎 → 0 gives Gaussian famous integral: 

∫ 𝑑𝑥  𝑒−𝑏𝑥
2
=
1

2

∞

0

√
𝜋

𝑏
                      (18) 

as it should be. 

 Finally, notice that, at present time, we have 

calculate around 1450 concrete integrals of above 

types [33]. 

 

III. BEAUTY OF SQUARE ROOT DIFFERENTIAL 

OPERATOR 

 

e. It turns out that the square-root differential 

operator is reduced the definite probabilistic measure 

[34]: 

𝜔(𝜌) =
1

𝜋
 

1

√1 − 𝜌2
                              (19) 

with well-known properties: 

∫𝑑𝜌  𝜔(𝜌) = 1,                             (20)

1

−1

 

∫𝑑𝜌  𝜌𝜔(𝜌) = 0,                        (21)

1

−1

 

∫𝑑𝜌  𝜌2𝜔(𝜌) =
1

2
,                         (22)

1

−1

 

Thus the Green function for the Weyl equation [35] 

√𝑚2 −  𝑊𝑐(𝑥) = 𝛿4(𝑥),           

 = −
1

𝑐2
𝜕2

𝜕𝑡2
+
𝜕2

𝜕𝒙2
 

has two equivalent solutions 

𝑊1𝑠𝑝
𝑐 (𝑥) =

1

𝜋
∫

𝑑𝜌

√1 − 𝜌2
  ×

1

−1

 

1

(2𝜋)4
∫𝑑4𝑝 𝑒−𝑖𝑝𝑥

𝑚 + 𝑝̂𝜌

𝑚2 − 𝑝2𝜌2 − 𝑖𝜀
 .             (23) 

and 

𝑊2𝑠𝑝
𝑐 (𝑥) =

1

𝜋
∫

𝑑𝜌

√1 − 𝜌2
  ×

1

−1

 

1

(2𝜋)4
∫𝑑4𝑝 𝑒−𝑖𝑝𝑥

𝑚𝜌 + 𝑝̂

𝑚2𝜌2 − 𝑝2 − 𝑖𝜀
               (24) 

Here energy value for these two cases takes the form: 

𝜔1 =
1

|𝜌|
√𝑚2 + 𝑝⃗2𝜌2                    (25) 

and  

𝜔1 = √𝑚
2𝜌2 + 𝑝⃗2                    (26) 

respectively . 

 The second case (26) gives a finite value for 

an averaged energy 

〈𝜔2〉 =
2

𝜋
∫𝑑𝜌

1

√1 − 𝜌2
  

1

0

√𝑚2𝜌2 + 𝑝⃗2 = 

2√𝑚2 + 𝑝⃗2

𝜋
𝐸 (

𝜋

2
,

𝑚

√𝑚2 + 𝑝⃗2
)            (27) 

and  

〈𝜔2
2〉 =

1

2
𝑚2 + 𝑝⃗2. 

Here 𝐸 (
𝜋

2
,

𝑚

√𝑚2+𝑝⃗2
) is the elliptic integral of the second 

kind [36]: 

𝐸(𝜑, 𝑘) = ∫ √1 − 𝑘2𝑠𝑖𝑛2𝛼 𝑑𝛼              (28)

𝜑

0

 

We assume that if there exist some new force which is 

carried by a square root particle, then a potential of 

this force is given by formula: 

𝑈𝐷(𝑟) =
𝜆

(2𝜋)3
∫𝑑3𝑝 𝑒𝑖𝑝⃗𝑟

1

√𝑚2 + 𝑝⃗2
= 

𝜆

2𝜋2
(
𝑚

𝑟
)𝐾1(𝑚𝑟),                                 (29) 

where 𝐾1(𝑧) is the Macdonald function and 𝜆 is some 

coupling constant. Asymptotic behavior of this 

potentine takes the form: 

http://www.jmess.org/
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𝑈𝐷(𝑟)

=

{
 

 
𝜆

4𝜋2
𝑚2𝑙𝑛

𝐶 ∙ 𝑧

2
, 𝑧 = 𝑚𝑟 → 0

𝜆

4𝜋2
𝑚2

𝑧
√
𝜋

2𝑧
 𝑒−𝑧, 𝑧 = 𝑚𝑟 → ∞

                    (30) 

𝐶 = 0.57721566490… 

f. Now let us consider the square-root 

differential equation: 

√𝑎2 +
𝑑2

𝑑𝑡2
 𝑋(𝑡) = 0,                       (31)  

where the probabilistic measure (19) appears: 

1

√𝑎2 +
𝑑2

𝑑𝑡2

 𝑓(𝑡) =
1

𝜋
∫

𝑑𝜌

√1 − 𝜌2

1

−1

 × 

∫ 𝑑𝛼

∞

0

𝑒
−𝛼(𝑎2+𝜌2

𝑑2

𝑑𝑡2
)
× 

(𝑎 + 𝑖𝜌
𝑑

𝑑𝑡
) 𝑓(𝑡).                       (32) 

Here  

𝑒
−𝛼𝜌2

𝑑2

𝑑𝑡2 =∑
(−1)𝑛

𝑛!

∞

𝑛=0

𝛼𝑛𝜌2𝑛
𝑑2𝑛

𝑑𝑡2𝑛
      (33) 

and we use the following integrals: 

1

𝜋
∫

𝑑𝜌

√1 − 𝜌2

1

−1

𝜌2𝑛

=
1

√𝜋
 
Г (𝑛 +

1
2
)

Г(𝑛 + 1)
,                    (34) 

∫ 𝑑𝛼 𝛼𝑛
∞

0

𝑒−𝛼 𝑎
2
= ( 𝑎2)−1−𝑛Г(1 + 𝑛), (35) 

1

𝜋
∫

𝑑𝜌

√1 − 𝜌2

1

−1

𝜌1+2𝑛 = 0.                      (36) 

Then, we have nice formula 

𝐷̂ =
1

√𝑎2 +
𝑑2

𝑑𝑡2

 

where 

𝐷̂𝑓(𝑡) =
1

√𝑎2 +
𝑑2

𝑑𝑡2

 𝑓(𝑡) = 

1

𝑎√𝜋
∑(−1)𝑛
∞

𝑛=0

Г (𝑛 +
1
2
)

𝑛!

1

𝑎2𝑛
(
𝑑2

𝑑𝑡2
)

𝑛

𝑓(𝑡).             (37) 

In particular: 

𝐷̂𝐶 =
1

𝑎
𝐶,   𝐷̂𝑡 =

1

𝑎
𝑡, 

𝐷̂𝑡2 =
1

𝑎
𝑡2 −

1

𝑎3
, 

𝐷̂𝑠𝑖𝑛𝑏𝑡 = ⋀(𝑎, 𝑏)𝑠𝑖𝑛𝑏𝑡, 

𝐷̂𝑐𝑜𝑠𝑏𝑡 = ⋀(𝑎, 𝑏)𝑐𝑜𝑠𝑏𝑡, 

𝐷̂𝑒𝑖𝑏𝑡 = ⋀(𝑎, 𝑏)𝑒𝑖𝑏𝑡, 

𝐷̂𝑒−𝑖𝑏𝑡 = ⋀(𝑎, 𝑏)𝑒−𝑖𝑏𝑡, 

𝐷̂𝑒𝑏𝑡 = ⋀′(𝑎, 𝑏)𝑒𝑏𝑡, 

𝐷̂𝑒−𝑏𝑡 = ⋀′(𝑎, 𝑏)𝑒−𝑏𝑡, 

and so on. Here 

⋀(𝑎, 𝑏) =
1

𝑎√𝜋
∑

Г(𝑛 +
1
2
)

𝑛!

∞

𝑛=0

(
𝑏2

𝑎2
)

𝑛

 

=
1

𝑎
(1 −

𝑏2

𝑎2
)

−1 2⁄

               (38) 

⋀′(𝑎, 𝑏)

=
1

𝑎√𝜋
∑(−1)𝑛

Г (𝑛 +
1
2
)

𝑛!

∞

𝑛=0

(
𝑏2

𝑎2
)

𝑛

 

=
1

𝑎
(1 +

𝑏2

𝑎2
)

−1 2⁄

                    (39) 

So that  

𝐷̂𝑠𝑖𝑛𝑏𝑡 =
𝑠𝑖𝑛𝑏𝑡

√𝑎2 − 𝑏2 
  

𝐷̂𝑐𝑜𝑠𝑏𝑡 =
𝑐𝑜𝑠𝑏𝑡

√𝑎2 − 𝑏2
, 

Finally, equation (31) takes the form: 

𝑁̂𝑋(𝑡) = √𝑎2 +
𝑑2

𝑑𝑡2
 𝑋(𝑡) = 

(𝑎2 +
𝑑2

𝑑𝑡2
)

√𝑎2 +
𝑑2

𝑑𝑡2

𝑋(𝑡) = 

(𝑎2 +
𝑑2

𝑑𝑡2
) 𝐷̂𝑋(𝑡) = 

𝐷̂ (𝑎2 +
𝑑2

𝑑𝑡2
)𝑋(𝑡)              (40) 

http://www.jmess.org/
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In particular: 

√𝑎2 +
𝑑2

𝑑𝑡2
𝑠𝑖𝑛𝑏𝑡

=
𝑎2 − 𝑏2

√𝑎2 − 𝑏2
𝑠𝑖𝑛𝑏𝑡.                     (41) 

√𝑎2 +
𝑑2

𝑑𝑡2
𝑐𝑜𝑠𝑏𝑡

=
𝑎2 − 𝑏2

√𝑎2 − 𝑏2
𝑐𝑜𝑠𝑏𝑡                         (42) 

Therefore, the square-root differential equation 

√𝑎2 +
𝑑2

𝑑𝑡2
𝑋(𝑡) = 0                       (43) 

describes also harmonic oscillator 𝑋(𝑡) = 𝐴𝑠𝑖𝑛𝑎𝑡 due 

to filter properties of the probabilistic measure (19)-

(22). 

 Generalization of the equation (43): 

√𝑚2 − 𝐺𝑐(𝑥) = 𝛿
4(𝑥)                     (44) 

or  

𝑚2 − 

√𝑚2 − 
𝐺𝑐(𝑥) = 𝛿

4(𝑥)               (45) 

( = −
1

𝑐2
𝜕2

𝜕𝑡2
+
𝜕2

𝜕𝑥⃗2
) 

leads to the description of the generalized causal 

Green function for square-root Klein-Gordon equation, 

where 

𝐺𝑐(𝑥) =
1

√𝑚2 − 
𝛿4(𝑥) = 

1

𝑚√𝜋
∑

(−1)𝑛

𝑛!

Г (𝑛 +
1
2
)

𝑚2𝑛

∞

𝑛=0

𝑛𝛿4(𝑥)                   (46) 

is the particular case of Efimov’s nonlocal or 

generalized function [37] describing a nonlocal or 

extended object [38]. This object is distributed in a 

domain determined by the length: 

𝐿 =
ℏ

𝑚𝑐
 

It is obviously that the plane wave 𝜑(𝑥) =
1

(2𝜋)3 2⁄  𝑒
𝑖𝑝𝑥(𝑝𝑥 = 𝑝0𝑥

0 − 𝑝⃗𝑥⃗)  satisfies the square-root 

differential equation 

√𝑚2 −  𝑒𝑖𝑝𝑥 =
𝑚2 − 𝑝2

√𝑚2 − 𝑝2
 𝑒𝑖𝑝𝑥 = 0                    (47) 

if 𝑚2 = 𝑝0
2 − 𝑝⃗2, where we have used the formula (46) 

with the change 𝛿4(𝑥) ⟹  𝑒𝑖𝑝𝑥. 

 

IV. BEAUTY OF DIFFERENTIAL EQUATIONS 

 

 Beauty of mathematics allows us to obtain 

second order differential equations describing different 

oscillator processes. 

 g. First kind of differential equation is 

𝑦̈1(𝑡) + 2𝑏𝑦̇1(𝑡) + (𝑏
2 +𝜔2)𝑦1(𝑡) = 0       (48) 

Solution of which is given by 

𝑦1(𝑡) = 𝐴  𝑒
−𝑏𝑡𝑠𝑖𝑛𝜔𝑡.              (49) 

When 𝑏 = 0 case is reduced the harmonic oscillator 

equation: 

𝑦̈1(𝑡) + 𝜔
2𝑦1(𝑡) = 0,           (50) 

where  

𝑦1(𝑡) = 𝐴 𝑠𝑖𝑛𝜔𝑡 

as it should be. 

 h. Let us consider following differential 

equation: 

𝑦̈2(𝑡) + 4𝑏𝑡𝑦̇2(𝑡) + 

(4𝑏2𝑡2 + 2𝑏 + 𝜔2)𝑦2(𝑡) = 0           (51) 

It is obviously that the case 𝑏 = 0  leads to again 

oscillator equation. Therefor the general solution of 

this equation is given by  

𝑦2(𝑡) = 𝐴  𝑒
−𝑏𝑡2𝑠𝑖𝑛𝜔𝑡,                     (52) 

which describes the exponential damping oscillation 

process. 

i. The case 𝑏 → −𝑏 leads to the equation: 

𝑦̈3(𝑡) − 4𝑏𝑡𝑦̇3(𝑡) + (4𝑏
2𝑡2 − 2𝑏 + 𝜔2)𝑦3(𝑡) = 0,      (53) 

solution of which is obviously: 

𝑦3(𝑡) = 𝐴  𝑒
𝑏𝑡2𝑠𝑖𝑛𝜔𝑡                         (54) 

describing the exponential increasing oscillator 

process. 

j. Lets see the following equation: 

𝑦̈4(𝑡) − 2𝑏𝜌𝑡
𝜌−1𝑦̇4(𝑡) − 

{𝑏𝜌𝑡𝜌−2[𝜌 − 1 − 𝑏𝜌𝑡𝜌] − 𝜔2}𝑦4(𝑡) = 0           (55) 

solution of which is 

𝑦4(𝑡) = 𝐴  𝑒
𝑏𝑡𝜌𝑠𝑖𝑛𝜔𝑡.                   (56) 

k. For the general case, we have the following 

differential equation: 
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𝑦̈𝐺(𝑡) − 2𝜔
𝑑

𝑑𝑡
𝑙𝑛𝑓 ∙ 𝑦̇𝐺(𝑡) = 

𝑦𝐺(𝑡) {−2𝜔 [
𝑑

𝑑𝑡
𝑙𝑛𝑓]

2

+
𝑓̈

𝑓
− 𝜔2},            (57) 

solution of which has the general form: 

𝑦𝐺(𝑡) = 𝐴 𝑓(𝑡)𝑠𝑖𝑛𝜔𝑡.                        (58) 

l. Let us consider more complicated 

differential equation: 

𝑦̈5(𝑡) − 2(
𝜌

𝑡
+

𝜈

(𝑎2 + 𝑏2𝑡𝜆)
∙
𝜆𝑏2

𝑡
𝑡𝜆) 𝑦̇5(𝑡) = 

{
𝜈𝜆𝑏2𝑡𝜆

𝑡𝜆(𝑎2 + 𝑏2𝑡𝜆)
(𝜆 − 1 − 2𝜌) −

𝜈𝜆2𝑏4𝑡2𝜆

𝑡2(𝑎2 + 𝑏2𝑡𝜆)2
(1 + 𝜈) − 

𝜌

𝑡2
(1 + 𝜌) − 𝜔2} 𝑦5(𝑡),                        (59) 

solution of which is given by the formula: 

𝑦5(𝑡) = 𝐴 𝑡
𝜌(𝑎2 + 𝑏2𝑡𝜆)

𝜈
𝑠𝑖𝑛𝜔𝑡              (60) 

1) for 𝜌 = 𝜈 = 0 case leads to the equation  

𝑦̈5(𝑡) − 𝜔
2𝑦5(𝑡) = 0                               (61) 

It has the solution  

𝑦5(𝑡) = 𝐴 𝑠𝑖𝑛𝜔𝑡. 

2) for 𝜌 = 0, we have equation 

𝑦̈6(𝑡) − 2
𝜈

𝑎2 + 𝑏2𝑡𝜆
∙
𝜆𝑏2

𝑡
 𝑡𝜆𝑦̇6(𝑡) = 

[
𝜈𝜆𝑏2𝑡𝜆

𝑡2(𝑎2 + 𝑏2𝑡𝜆)
(𝜆 − 1) − 

𝜈𝜆2𝑏4𝑡2𝜆

𝑡2(𝑎2 + 𝑏2𝑡𝜆)2
(1 + 𝜈) − 𝜔2] 𝑦6(𝑡)            (62) 

solution of which is given by  

𝑦6(𝑡) = 𝐴(𝑎
2 + 𝑏2𝑡𝜆)

𝜈
𝑠𝑖𝑛𝜔𝑡.                      (63) 

3) The case 𝜈 = 0 leads to the equation 

𝑦̈7(𝑡) − 2
𝜌

𝑡
𝑦̇7(𝑡) + 

[
𝜌

𝑡2
(1 + 𝜌) + 𝜔2] 𝑦7(𝑡) = 0           (64) 

which has the solution: 

𝑦7(𝑡) = 𝐴 𝑡
𝜌𝑠𝑖𝑛𝜔𝑡.                   (65) 

4) The case 𝑏 = 0 gives the equation: 

𝑦̈8(𝑡) − 2
𝜌

𝑡
𝑦̇8(𝑡) = 

[−
𝜌

𝑡2
(1 + 𝜌) − 𝜔2] 𝑦8(𝑡) = 0          (66)  

which has the following solution: 

𝑦8(𝑡) = 𝐴 𝑡
𝜌 ∙ 𝑎2𝜈𝑠𝑖𝑛𝜔𝑡.                (67) 

5) The case 𝑎 = 0 gives 

𝑦̈9(𝑡) − 2 (
𝜌

𝑡
+
𝜈𝜆

𝑡
) 𝑦̈9(𝑡) = 

[
𝜈𝜆

𝑡2
(𝜆 − 1 − 2𝜌) −

𝜈𝜆2

𝑡2
(1 + 𝜈)

−
𝜌

𝑡2
(1 + 𝜌) − 𝜔2] 𝑦9(𝑡)               (68) 

This equation has the solution: 

𝑦9(𝑡) = 𝐴 𝑡
𝜌 ∙ 𝑏2𝜈𝑡𝜈𝜆 𝑠𝑖𝑛𝜔𝑡.             (69) 

6) Finally for 𝜆 = 0 we have 

𝑦̈10(𝑡) − 2
𝜌

𝑡
𝑦̇10(𝑡) = 

(−
𝜌

𝑡2
(1 + 𝜌) − 𝜔2)𝑦10(𝑡)                (70) 

This equation has the following solution 

𝑦10(𝑡) = 𝐴 𝑡
𝜌(𝑎2 + 𝑏2)𝜈 𝑠𝑖𝑛𝜔𝑡         (71) 

 m. In conclusion, we consider the following 

differential equation for sine and cosine functions: 

𝑦̈11(𝑡) − 2𝜈𝑠𝑖𝑛𝜈𝑡 ∙
1

𝑐𝑜𝑠𝜈𝑡
𝑦̇11(𝑡) = 

[2𝜈2
𝑠𝑖𝑛2𝜈𝑡

𝑐𝑜𝑠2𝜈𝑡
− 𝜈2−𝜔2] 𝑦11(𝑡),     (72) 

solution of which is given by the formula 

𝑦11(𝑡) = 𝐴 𝑐𝑜𝑠𝜈𝑡 ∙  𝑠𝑖𝑛𝜔𝑡          (73) 

 

V. BEAUTY OF FRACTIONAL DERIVATIVES 

 

n. Let us consider the following fractional 

derivatives of some elementary functions (see, also 

[39]): 

(
𝑑

𝑑𝑥
)
𝜌

 𝐶 = 0, 

(
𝑑

𝑑𝑥
)
𝜌

𝑠𝑖𝑛(𝑎𝑥) = 𝑎𝜌𝑠𝑖𝑛 (𝑎𝑥 +
𝜋

2
𝜌), 

(
𝑑

𝑑𝑥
)
𝜌

𝑐𝑜𝑠(𝑎𝑥) = 𝑎𝜌𝑐𝑜𝑠 (𝑎𝑥 +
𝜋

2
𝜌), 

(
𝑑

𝑑𝑥
)
𝜌

𝑒𝑎𝑥 = 𝑎𝜌𝑒𝑎𝑥, 

(
𝑑

𝑑𝑥
)
𝜌

𝑒−𝑎𝑥 = −𝑎𝜌𝑒−𝑎𝑥, 

(
𝑑

𝑑𝑥
)
𝜌

𝑎𝑥 = (𝑙𝑛𝑎)𝜌𝑎𝑥, 𝑎 > 1, 
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and so on. Here 𝜌 is any number, even more complex number. 
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