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I. INTRODUCTION 

 During 20 Century main problem of physics was 

elimination from ultraviolet divergences in quantum 

physics. Many physicists’ works were devoted to this 

problem and finally, it leads to the Standard model [1]. 

Among many attempts, the nonlocal quantum field  

theory was played an important role in the solution of 

this problem. This approach is more attractive, 

because in it there exist concept of extended objects 

and some characteristic length named fundamental 

length. This scheme leads to the nonlocal interactions 

of quantized fields. Historically, among these 

directions the nonlocal theory with a form factor was 

initiated from Pauli and Villars work [2], recently by 

Efimov [3] and author of this paper [4]. 

 It is well known that the singularity in classical 

electrodynamics was cornerstone of the ultraviolet 

divergence in the quantum electrodynamics. Indeed, 

singularity of the Coulomb potential at small distances  

𝑈𝑐(𝑟) =
𝑒

4𝜋

1

𝑟
                                           (1) 

is automatically leads to divergence of the photon 

propagator in the static limit with using the Yukawa 

corresponding principle: 

𝐷𝑐(𝑝⃗) =
1

𝑒
∫ 𝑑3𝑟𝑒𝑖𝑝⃗𝑟  𝑈𝑐(𝑟) =

1

𝑝⃗2
     (2) 

or in 𝑥 – space: 

𝐷𝑐
𝜇𝜈(𝑥) =

1

(2𝜋)4𝑖
𝑔𝜇𝜈 × 

∫ 𝑑4𝑝 𝑒𝑖𝑝𝑥
1

𝑝0
2 − 𝑝⃗2 + 𝑖𝜀

 .   (3) 

To eliminate this divergence, we introduced following 

finite potential form: 

𝑈𝑐
ℓ(𝑟) =

𝑒

4𝜋

1

√𝑟2 + ℓ2
               (4) 

and constructed the finite nonlocal quantum 

electrodynamics [5]. Also it is shown that if it is 

introduced the potential of the stick or dipole of the 

form 

𝑉𝑑(𝑟) =
1

4𝜋

𝑒

𝑟
(1 +

2ℓ

𝑟
)                   (5) 

leading to the appearance of propagators of the 

photon and photino all together: 

𝐷𝜇𝜈
𝑒𝛾(𝑥) =

1

(2𝜋)4𝑖
𝑔𝜇𝜈 ∫ 𝑑4𝑝 𝑒𝑖𝑝𝑥 × 

[
1

𝑝2 + 𝑖𝜀
+ 𝜋ℓ

(−𝑖𝑝̂)

𝑝2 + 𝑖𝜀
],    

𝑝2 = 𝑝0
2 − 𝑝⃗2,                                   (6) 

then one can construct a finite theory free from 

ultraviolet divergences [6]. 

 Worth notice that these two schemes (4) and 

(5) allow us to calculate nonlocal and photino 

constributions to the muon anomalous magnetic 

moment (AMM): 

 

(∆𝜇)𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙 = 

𝛼

2𝜋
[1

+
𝑚𝜇

2ℓ2

6
(𝑙𝑛

𝑚𝜇
2ℓ2

4
+

1

6

− 2𝜓(1))]      (7) 

and  

(∆𝜇)𝑝ℎ𝑜𝑡𝑖𝑛𝑜 =
4

15
𝛼𝑚𝜇ℓ                   (8) 
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 By using experimental data [7] and theoretical 

calculations [8] for the muon AMM one can obtain 

from these two expressions (7) and (8) corresponding 

characteristic lengths [9]: 

ℓ𝑛𝑜𝑛 = 1.93 × 10−15𝑚                          (9) 

and  

ℓ𝑝ℎ𝑜𝑡 = 1.28 × 10−25𝑚                  (10) 

respectively. It means that the difference between 

𝑎𝜇
𝑒𝑥𝑝

− 𝑎𝜇
𝑠𝑚  is explained by means of the nonlocal 

theory and an existence of the photino. 

 

II. Sign Variable Potentials 

 

a. Concrete Forms of Potentials  

 We think that sign variable potentials play an 

important role in creation of bound states in physics. 

For example, two electrons due to these potentials in 

the Coulomb interactions may be form bound states to 

get Cooper pairs, i.e., boson condensations. This 

phenomenon plays a vital role in superconductivity 

and superstream and so on. 

 Let us consider the following sign variable 

Coulomb type potential 

𝑈𝑠
1(𝑟) =

𝑒

4𝜋

1

𝑟
𝐽0 (√𝑟 ℓ⁄ ),              (11) 

where 𝐽0(𝑥) is the Bessel function of the zero-order: 

𝐽0(𝑥) = ∑
(−1)𝑛

𝑛! Г(1 + 𝑛)
(

𝑥

2
)

2𝑛

=

∞

𝑛=0

 

1

2𝑖
∫

𝑑𝜉
1

𝑠𝑖𝑛𝜋𝜉Г2(1 + 𝜉)
(

𝑥

2
)

2𝜉

,

 (−1 < 𝛽 < 0),

−𝛽−𝑖∞

−𝛽+𝑖∞

                      (12) 

This is the Mellin representation for 𝐽0(𝑥) – function. 

 Notice that there exists another complicated 

sign variable potential: 

𝑈𝑠
2(𝑟)

=
𝑒

2𝜋

1

𝑟
𝐽0 (√𝑟 ℓ⁄ ) 𝐾0 (√𝑟 ℓ⁄ ),                       (13)  

where 𝐾0(𝑥)  is the Macdonald function of the zero 

order: 

 

𝐾0(𝑥) = −𝐼0(𝑥)𝑙𝑛
𝑥

2
+ 

∑
𝑥2𝑘

22𝑘(𝑘!)2
𝜓(1 + 𝑘)

∞

𝑘=0

.                     (14) 

Here 

𝐼0(𝑥) = ∑
1

(𝑛!)2
(

𝑥

2
)

2𝑛

.                   (15)

∞

𝑛=0

 

 

b. Nonlocal Photon Propagator 

 

 In the static limit, Fourier transform of 

potentials (11) and (13) gives corresponding nonlocal 

photon propagators: 

𝐷1(𝑝⃗) =
1

𝑝⃗2
𝑐𝑜𝑠 (

1

4|𝑝⃗|ℓ
),            (16) 

and 

𝐷2(𝑝⃗) =
1

𝑝⃗2
𝐾0 (

1

2|𝑝⃗|ℓ
).               (17) 

In this paper, we use only propagator (16) which is 

given by in the four-dimensional case: 

𝐷𝜇𝜈
1 (𝑥) =

1

(2𝜋)4

1

𝑖
𝑔𝜇𝜈 ∫ 𝑑4𝑝 𝑒𝑖𝑝𝑥 × 

𝑐𝑜𝑠 (
1

4ℓ√−𝑝2
)

1

𝑝2 + 𝑖𝜀
 ,                           (18) 

where 

𝑐𝑜𝑠 (
1

4ℓ√−𝑝2
) =

1

2𝑖
∫ 𝑑𝜉 ×

−𝛽−𝑖∞

−𝛽+𝑖∞

 

(
1
4

)
2𝜉

𝑠𝑖𝑛𝜋𝜉Г(1 + 2𝜉)
(

1

−𝑝2ℓ2
)

𝜉

             (19) 

𝑝2 = 𝑝0
2 − 𝑝⃗2, −1 < 𝛽 < 0. 

For concrete calculational purpose, the formula (18) 

can be write in convenient form: 

𝐷𝜇𝜈(𝑥) = 𝐷𝜇𝜈
1 (𝑥) =

1

(2𝜋)4

1

𝑖
𝑔𝜇𝜈 × 

∫ 𝑑4𝑝 𝑒𝑖𝑝𝑥
𝑉(−𝑝2ℓ2)

𝑝2 + 𝑖𝜀
,                        (20) 

Here 

𝑉(−𝑝2ℓ2)

=
1

2𝑖
∫ 𝑑𝜉

𝑣(𝜉)

𝑠𝑖𝑛𝜋𝜉
(−𝑝2ℓ2)−𝜉 ,                (21)

−𝛽−𝑖∞

−𝛽+𝑖∞

 

𝑣(𝜉) =
1

Г(1 + 2𝜉)
4−2𝜉                    (22) 

c. The Interaction Lagrangian and S-Matrix 

 The interaction Lagrangian of the nonlocal 

quantum electrodynamics arisen from the modification 

of the Coulomb potential (11) has similar structure as 

the local theory [10]. 

𝐿𝑖𝑛(𝑥) = 𝑒: 𝜓̅(𝑥)𝐴̂(ℓ, 𝑥)𝜓(𝑥):            (23) 

and corresponding S-matrix takes the form  

𝑆 = 𝑇𝑒𝑥𝑝 {𝑖 ∫ 𝑑4𝑥 𝐿𝑖𝑛(𝑥)}               (24) 

Here 
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𝐴̂(ℓ, 𝑥) = 𝐴𝜇(ℓ, 𝑥)𝛾𝜇 . 

Here “chronological” pairing (or T-product) of the 

fermonic field operators of electrons has the usual 

local form: 

𝑆(𝑥 − 𝑦) = ⟨0|𝑇{𝜓̅(𝑥)𝜓(𝑦)}|0⟩ = 

1

(2𝜋)4

1

𝑖
∫ 𝑑4𝑝 

𝑒−𝑖𝑝(𝑥−𝑦)

𝑚 − 𝑝̂ − 𝑖𝜀
              (25) 

while causal Green function of the nonlocal 

electromagnetic field 𝐴𝜇(ℓ, 𝑥) in (23) acquires the form  

𝐷𝜇𝜈(𝑥 − 𝑦) = ⟨0|𝑇{𝐴𝜇(ℓ, 𝑥)𝐴𝜈(ℓ, 𝑦)}|0⟩ = 

𝑔𝜇𝜈𝐷ℓ(𝑥 − 𝑦) = 

1

(2𝜋)4

𝑔𝜇𝜈

𝑖
∫ 𝑑4𝑝 

𝑉(−𝑝2ℓ2)

𝑝2 + 𝑖𝜀
𝑒−𝑖𝑝(𝑥−𝑦)       (26) 

due to formula (20). 

 Further. as usual in our case Feynman 

diagrams with the exception of closed fermion loops 

are investigated all which are finite at high 

momentum. 

d. Vacuum Polarization 

 In our theory the vacuum polarization does 

not changed and has the standard structure in 𝑥 -

space: 

Π𝜇𝜈(𝑥 − 𝑦) = 

−𝑖𝑒2𝑇𝑟{𝛾𝜇𝑆(𝑥 − 𝑧)𝛾𝜈𝑆(𝑧 − 𝑦)}.      (27) 

In the momentum space, after some traditional 

calculations, we have 

Π(𝑞2)
𝑒2

2𝜋2
∫ 𝑑𝑥 𝑥 (1 − 𝑥) ×

1

0

 

𝑙𝑛 (1 +
𝑞2𝑥(1 − 𝑥)

𝑚2
).                         (28) 

Here 

Π𝜇𝜈(𝑞)

= (𝑔𝜇𝜈𝑞2 − 𝑞𝜇𝑞𝜈)Π(𝑞2)                (29) 

e. Lepton Self-Energy 

 In this work, we do not draw primitive 

Feynman diagrams which were done in my many 

papers [5,6,9]. Thus in this nonlocal theory the self-

energy has the form 

Σℓ (𝑥 − 𝑦) = 

−𝑖𝑒2𝛾𝜇𝑆(𝑥 − 𝑦)𝛾𝜇𝐷ℓ(𝑥 − 𝑦)      (30) 

After some calculations, we have in the momentum 

space: 

Σ̃ℓ(𝑝) =
𝑒2

8𝜋

1

2𝑖
∫ 𝑑𝜉

1

𝑠𝑖𝑛2𝜋𝜉

−𝛽−𝑖∞

−𝛽+𝑖∞

× 

𝑣(𝜉)(𝑚2ℓ2)−𝜉

Г(1 − 𝜉)
𝐹(𝜉, 𝑝)             (31)     

where 

𝑣(𝜉) =
1

Г(1 + 2𝜉)
4−2𝜉 

and 

𝐹(𝜉, 𝑝) =
1

Г(1 + 𝜉)
∫ 𝑑𝑢 (

1 − 𝑢

𝑢
)

−𝜉

×

1

0

 

(1 +
𝑝2

𝑚2
𝑢)

−𝜉

(2𝑚 − 𝑝̂𝑢)                  (32) 

f. The Vertex Function 

 In the momentum space and in the Euclidean 

metric, the vertex function takes the form  

Г̃𝜇
ℓ (𝑝1, 𝑝)

= −
𝑒2

(2𝜋)4
∫ 𝑑4𝑘𝐸

𝑉((𝑝𝐸 − 𝑘𝐸)2ℓ2)

(𝑝𝐸 − 𝑘𝐸)2
𝛾𝜈 × 

𝑚 − 𝑘̂𝐸 − 𝑝̂𝐸

𝑚2 + (𝑘𝐸 + 𝑝𝐸)2
𝛾𝜇

𝑚 − 𝑘̂𝐸

𝑚2 + 𝑘𝐸
2 𝛾𝜈.         (33) 

After some standard calculations, we have  

Г̃𝜇
ℓ (𝑝1, 𝑝) = −

𝑒2

8𝜋

1

2𝑖
∫ 𝑑𝜉

𝜐(𝜉)

𝑠𝑖𝑛2𝜋𝜉
×

−𝛽−𝑖∞

−𝛽+𝑖∞

 

(𝑚2ℓ2)−𝜉

Г(1 + 𝜉)
𝐹(𝜉, 𝑝1, 𝑝)                           (34) 

where 

F𝜇(𝜉; 𝑝1, 𝑝)

= 𝛾𝜇F1(𝜉; 𝑝1, 𝑝)

+ F2𝜇(𝜉; 𝑝1, 𝑝) 

Here 

F1(𝜉; 𝑝1, 𝑝) =
1

Г(1 + 𝜉)
∫ ∫ ∫ 𝑑𝛼𝑑𝛽𝑑𝛾

1

0

1

0

1

0

 

×  𝛿(1 − 𝛼 − 𝛽 − 𝛾)𝛼𝜉𝑄−𝜉 ,                (35) 

F2𝜇(𝜉, 𝑝1, 𝑝) =
1

Г(𝜉)
∫ ∫ ∫ 𝑑𝛼𝑑𝛽𝑑𝛾 ×  

1

0

1

0

1

0
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𝛿(1 − 𝛼 − 𝛽 − 𝛾) × 

𝛼𝜉𝑄−1−𝜉
1

𝑚2
[𝑚2𝛾𝜇 − 2𝑚𝑞𝜇

+ 4𝑚(𝛽𝑞𝜇 − 𝛼𝑝𝜇) + 

+(𝛼𝑝̂ − 𝛽𝑞̂)𝛾𝜇𝑞̂

+ (𝛼𝑝̂ − 𝛽𝑞̂)𝛾𝜇(𝛼𝑝̂

− 𝛽𝑞̂)]              (36) 

and  

𝑄 = 𝛽 + 𝛾 − 𝛼𝛾
𝑝2

𝑚2
− 

−𝛽𝛾
𝑞2

𝑚2
− 𝛼𝛽

(𝑝 + 𝑞)2

𝑚2
 . 

By using expressions (34)-(36) one can obtain detail 

results as before [5,6,9]. 

 In this approach it is interesting to calculate 

contribution to the lepton anomalous magnetic 

moment 

(∆𝜇)𝑙𝑒𝑝𝑡𝑜𝑛

=
𝛼

2𝜋
[1 +

2 

3
𝜐(−1)𝑚2ℓ2].     (37) 

Notice that to obtain this formula we can move the 

counter integration to the left in above formulas. For 

the anomalous MM for the muon, the difference 

between the experimental data and theoretical 

calculations acquires the form [7,8]: 

∆= 𝑎𝜇
𝑒𝑥𝑝

− 𝑎𝜇
𝑠м

= (25.1 ± 5.9)

× 10−10.            (38) 

It turns out that the nonlocal theory with the form 

factor (22) does not give contribution to this 

difference, because 

𝜐(−1) =
16

Г(−1)
= 0. 

It means that charged leptons are trapped at rest in 

the origin of the coordinate system. 

g. Appendix 1 

 Now let us calculate the photon propagator 

arisen from the sign variable potential (13). 

For this purpose, we use the integral representation 

for 𝐾0(𝑧) - function [11]: 

𝐾0(ℓ𝑧) = ∫ 𝑑𝑡
𝑐𝑜𝑠ℓ𝑡

√𝑡2 + 𝑧2

∞

0

                 (39) 

where  

𝑐𝑜𝑠ℓ𝑡

=
1

2𝑖
∫ 𝑑𝜉

(ℓ𝑡)2𝜉

𝑠𝑖𝑛𝜋𝜉Г(1 + 2𝜉)
.

−𝛽−𝑖∞

−𝛽+𝑖∞

              (40) 

Thus 

∫ 𝑑𝑡
𝑡2𝜉+1−1

(𝑧2 + 𝑡2)1 2⁄
=

1

2𝑧

∞

0

(𝑧2)
2𝜉+1

2 × 

Г (
2𝜉 + 1

2
) Г (

1
2

−
1 + 2𝜉

2
)

Г (
1
2

)
. 

Here 

Г(−𝜉)Г(1 + 𝜉) = −
𝜋

𝑠𝑖𝑛𝜋𝜉
 . 

Therefore 

𝐾0(ℓ𝑧) = −
√𝜋

4𝑖
∫ 𝑑𝜉 

−𝛽−𝑖∞

−𝛽+𝑖∞

× 

(𝑧ℓ)2𝜉

𝑠𝑖𝑛2𝜋𝜉

Г (
1
2

+ 𝜉)

Г(1 + 2𝜉)Г(1 + 𝜉)
 .                         (41) 

Then relativistic extension of (17) gives the nonlocal 

photon propagator arisen from the potential (13) an 

explicit form of which acquires the form: 

𝐷𝜇𝜈
2 (𝑥) =

1

(2𝜋)4

1

𝑖
𝑔𝜇𝜈 ∫ 𝑑4𝑝 𝑒𝑖𝑝𝑥 × 

𝑉2(−𝑝2ℓ2)

𝑝2 + 𝑖𝜀
                           (42) 

where 

𝑉2(−𝑝2ℓ2)

=
1

2𝑖
∫ 𝑑𝜉

𝜐2(𝜉)

𝑠𝑖𝑛𝜋𝜉
(−𝑝2ℓ2)−𝜉 .             (43)  

−𝛽−𝑖∞

−𝛽+𝑖∞

 

Here 

𝜐2(𝜉) = −
√𝜋

2
× 

Г (
1
2

+ 𝜉)

𝑠𝑖𝑛𝜋𝜉Г(1 + 𝜉)Г(1 + 2𝜉)
2−2𝜉                   (44) 

 Notice that construction of the nonlocal 

quantum electrodynamics with using the photon 

propagator (42) encounters some calculational 

difficulties. This approach with the photon propagator 

(42) is very similar to our previous work [5]. 
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 In conclusion it is notice that sign variable 

potential approach with the formfactors (21) and (43) 

which respect to the nonlocal theories arisen from the 

Coulomb like potentials (4) and (5) give an essential 

nonlocal theory, where at the limit ℓ → 0 it does not 

going to the usual local theory. 

h. Appendix 2 

 Photino potentials, propagators and their 

nonlocal formfactors 

 In our scheme, the Coulomb like potential for 

photino takes the form: 

𝑈𝑝ℎ𝑜𝑡(𝑟) =
𝑒

2𝜋2

1 

𝑟2
 .                         (45) 

Therefore the photino propagator in the static limit 

acquires the standard form: 

𝐷𝑝ℎ𝑜𝑡(|𝑝⃗|) =
1 

𝑒

1

2𝜋2
× 

∫ 𝑑3𝑟 𝑒𝑖𝑝⃗𝑟
1

𝑟2
=

1

|𝑝⃗|
                         (46) 

or the relativistic extension gives 

𝐷𝑝ℎ𝑜𝑡(𝑝) = −𝑖
𝑝̂ 

𝑝2 + 𝑖𝜀
 , 

 𝑝̂ = 𝛾𝜈𝑝𝜈             (47) 

Now let us obtain a nonlocal formfactors for photino. 

For this purpose, one can consider the following 

potential form 

𝑈𝑝ℎ𝑜𝑡
𝑛𝑜𝑛 (𝑟) =

𝑒

2𝜋2

1 

𝑟2 + ℓ2
                    (48) 

The Fourier transform of this potential in the relativistic 

case gives 

𝐷𝑝ℎ𝑜𝑡
ℓ (𝑝) =

−𝑖𝑝̂ 

𝑝2 + 𝑖𝜀
𝑒−ℓ√−𝑝2

,               (49) 

where for this formfactor the following Mellin 

representation is valid 

𝑒−ℓ√−𝑝2
=

1

2𝑖
∫ 𝑑𝜉 × 

−𝛽−𝑖∞

−𝛽+𝑖∞

 

1

𝑠𝑖𝑛𝜋𝜉Г(1 + 𝜉)
ℓ𝜉(−𝑝2)𝜉 2⁄                             (50) 

 Notice that there exist many possibilities to 

obtain nonlocal photino propagators. Here we give 

some examples. Let 

𝑈𝑝ℎ𝑜𝑡
2𝑛 (𝑟) =

1 

𝑟2 − ℓ2
∙

𝑒

2𝜋2
                    (51) 

Then, we have 

𝐷𝑝ℎ𝑜𝑡
2ℓ (𝑝)

=
−𝑖𝑝̂ 

𝑝2 + 𝑖𝜀
𝑐𝑜𝑠 (ℓ√−𝑝2),               (52) 

𝑐𝑜𝑠 (ℓ√−𝑝2) =
1

2𝑖
∫ 𝑑𝜉 × 

−𝛽−𝑖∞

−𝛽+𝑖∞

 

1

𝑠𝑖𝑛𝜋𝜉Г(1 + 2𝜉)
ℓ2𝜉(−𝑝2)𝜉                        (53) 

Further, let us consider the following potential form 

𝑈𝑝ℎ𝑜𝑡
3𝑛 (𝑟) =

𝑒

2𝜋2

𝑟2 

𝑟4 + ℓ4
 

then we have 

𝐷𝑝ℎ𝑜𝑡
3ℓ (𝑝) =

−𝑖𝑝̂ 

𝑝2 + 𝑖𝜀
𝑒𝑥𝑝 (−

ℓ√−𝑝2

√2
) × 

𝑐𝑜𝑠 (
ℓ√−𝑝2

√2
),   𝑝2 = 𝑝0

2 − 𝑝⃗2        (54) 

This is a complicated formfactor.  

Let us consider the potential form for the photino: 

𝑈𝑝ℎ𝑜𝑡
4𝑛 (𝑟) =

𝑒

𝜋2

𝑟2 

(𝑟4 − ℓ4)
               (55) 

This form of the potential gives 

𝐷𝑝ℎ𝑜𝑡
4ℓ (𝑝) =

−𝑖𝑝̂ 

𝑝2 + 𝑖𝜀
× 

[𝑒−ℓ√−𝑝2
+ 𝑐𝑜𝑠 (ℓ√−𝑝2)]                  (56) 

Finally, we use the following potential form 

𝑈𝑝ℎ𝑜𝑡
5𝑛 (𝑟)

=
𝑒

2𝜋2

𝐼0
−1(1) 

𝑟2 + ℓ2
𝐽0 (

𝑟

ℓ
),             (57) 

where 

𝐼0(1) = ∑
1

(𝑛!)2
(

1

2
)

2𝑛∞

𝑛=0

 

is the cylinder function. Then we have  

𝐷𝑝ℎ𝑜𝑡
5ℓ (𝑝) =

−𝑖𝑝̂ 

𝑝2 + 𝑖𝜀
𝑒−ℓ√−𝑝2

         (58) 

The above mentioned cases mean that we can 

construct the photino nonlocal theory. 

 The photino theory with above mention 

formfactors is free from the ultraviolet divergences. 

Here the parameter ℓ is an order of ℓ ≤ 2 × 10−25𝑚. 

 
 
 
. 
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