Experimental And Matlab-Aided Determination Of The Parameters Of A Transformer And Its Performance Under Magnetic Saturation
 Obomegie Marian

Isichei Pius
Electrical and Electronic Engineering Technology
Department
Auchi Polytechnic, Auchi Edo State, Nigeria.
isicheiotomi@yahoo.com

Electrical and Electronic Engineering Technology
Department
Auchi Polytechnic, Auchi Edo State, Nigeria.
mayoboms@yahoo.com

Isah Osilama
Electrical and Electronic Engineering Technology Department
Auchi Polytechnic, Auchi Edo State, Nigeria. osihariet@gmail.com

Ezolome Suleiman
Electrical and Electronic Engineering Technology Department
Auchi Polytechnic, Auchi Edo State, Nigeria. ustazsuleman.e@auchipoly.edu.ng

Abstract

The operational parameters of a refurbished 3000VA single-phase inverter transformer were investigated. The use of MATLAB was necessary to facilitate the exercise. In this paper, the author gives details of the significant transformer performance equations and by application of MATLAB software. The results of the no-load and short-circuit laboratory experiments, the necessary MATLAB programs were written. On test-running the programs, six major transformer equivalent circuit parameters were obtained as a precursor to the determination of the transformer performance data. By the same round of test-running, the refurbished transformer yielded the following performance details: no-load exciting current = 4.10A; core losses $=33.90 \mathrm{~W}$; copper losses $=$ 157.18W; efficiency = 89.74\%; and voltage regulation = 10.35%, to mention key parameters. The magnetization curve of the apparatus was also obtained in the process. And by means of the latter, the saturation level, $K_{\text {sat, }}$ of the transformer was manually estimated and the final round of test-running the MATLAB program was undertaken. With the $K_{\text {sat }}$ value of 3.0 p.u., the above main performance data became: no-load current $=12.09 \mathrm{~A}$; core losses $=38.55 \mathrm{~W}$; copper losses $=$ 239.75W; efficiency $=89.57 \%$; and voltage regulation $=$ 9.38\%. And the inverter transformer was adjudged to be fairly okay.


```
Keywords- Transformer, Parameters, Performance, Saturation, Matlab.
```


I. INTRODUCTION

The transformer is the heartbeat of any electrical equipment. The use of transformers in both highvoltage power system networks and low-voltage equipment is inevitable [1]. The transformer used in this research is a refurbished $3000 \mathrm{VA}, 230 / 48 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase inverter transformer. It became defective due to a serious overload when it was made to charge a drained inverter battery bank. The normal load, however, involved mainly illuminating lamps and office/home cooling fans. The estimated input power factor, considered to accommodate the actual load power factor, was, therefore, 0.9 p.u., lagging [1]. After refurbishment, subjecting it to a steady-state
computer-aided performance evaluation became necessary.

An investigation carried out without saturation (and or skin effect, harmonic effect, etc.) amounts to a linearization approach to avoid cumbersome modeling and computations. Including saturation, as in this survey, introduces non-linearity and so brings the researcher closer to the real performance of the equipment. To this end, the open-circuit characteristic (OCC) of the transformer is vital and is usually obtainable from the no-load test of the apparatus, other tests notwithstanding.

Thus, the work here begins with the production of the relevant transformer performance equations and the presentation of the laboratory no-load and shortcircuit experimentation results all which are featured in Section 2.0. In Section 3.0, the author gives details of the results of the test-running of the computer programs generated; whilst, in Section 4.0 discussion, conclusion and recommendation together brings up the rear.

II. PERFORMANCE EQUATIONS

The exact equivalent circuit for a transformer is as shown in Fig.1. Sometimes, when exact computational results are not required the core loss and magnetizing branch is moved to the supply terminals, as shown in Fig.2. The error introduced by this does not usually exceed $2-3 \%$ [2].

Fig.1: Exact T-Equivalent Circuit of any Transformer with the secondary parameters referred to the primary.

Fig.2: Approximate Equivalent Circuit of a Small-Sized Transformer with the secondary parameters referred to the primary.

Also, since generally the no-load current, I_{o}, is hardly 3 to 5% of the full-load rated current, this parallel branch consisting of the resistance R_{c} and reactance X_{m} can be omitted completely without introducing any appreciable error in the behaviour of the transformer under loaded condition [3], especially in larger transformers [4].
The equivalent circuit parameters are defined as follows: V_{1} - the applied terminal phase voltage to the primary winding; E_{1} - the back emf produced in the primary winding due to $\mathrm{V}_{1} ; \mathrm{E}_{21}$ - the induced secondary emf referred to the primary; l_{1} - the phase current in the primary winding driven by $\mathrm{V}_{1} ; \mathrm{I}_{21}$ - the load component of the primary current, designated as the secondary phase current referred to the primary; I_{0} - the core exciting (or no-load) current; I_{c} - The power loss component of the core exciting current; I_{m} - the core magnetizing current component of the exciting (or no-load) current (this current is responsible for the setting up of the mutual flux, ϕ_{m}, in the apparatus and is therefore associated with the hysteresis loss); R_{1} the series per-phase primary winding resistance, associated with the copper ($I^{2} R$) losses in the primary; R_{21} - The series per-phase secondary resistance referred to the primary; R_{c} - the shunt core (i.e. iron) resistance associated with the iron losses of the apparatus (it is indeed the reflection of the core or magnetic circuit conductance, i.e. $\left.g=1 / R_{c}\right) ; X_{1}$ - the series per-phase leakage reactance produced in the primary circuit owing to the leakage inductance introduced into the circuit by the stray flux which happens to link only the primary winding; X_{21} - the series per-phase secondary leakage reactance referred to the primary; X_{m} - the shunt core reactance produced by the mutual inductance resulting from the presence of the mutual flux, ϕ_{m}, in the magnetic circuit (this is the reflection of the susceptance of the magnetic circuit, i.e. $b=1 / X_{m}$); $Z_{L 1}$ - load impedance referred to the primary.

III. Equations for the Equivalent Circuit Parameter Computations

From the no-load test [4],[5]:

$$
I_{o}=\frac{V_{1}}{V_{o c}} I_{o c} ; P_{o c 1}=\left[\frac{V_{1}}{V_{o c}}\right]^{2} P_{o c}
$$

(no-load current \& power on full voltage)

$$
\begin{equation*}
\cos \varphi_{o c}=\frac{P_{o c 1}}{V_{1} I_{o}} ; \varphi_{o c}=\cos ^{-1}\left[\frac{P_{o c 1}}{V_{1} I_{o}}\right] \tag{2}
\end{equation*}
$$

(no-load power-factor \& p.f. angle)

$$
\begin{equation*}
I_{c}=I_{o} \cos \varphi_{o c} \text { and } \mathrm{I}_{\mathrm{m}}=I_{o} \sin \varphi_{o c} \tag{3}
\end{equation*}
$$

(no-load loss \& magnetizing currents)

$$
\begin{equation*}
Z_{o}=\frac{V_{1}}{I_{o}} ; \quad R_{c}=\frac{V_{1}}{I_{c}} ; \text { and } X_{m}=\frac{V_{1}}{I_{\mathrm{m}}} \tag{4}
\end{equation*}
$$

(no-load impedance \& its components)

$$
\begin{equation*}
R_{s}=R_{1}+R_{21}=\frac{P_{s c}}{I_{s c}^{2}} \tag{5}
\end{equation*}
$$

From the short-circuit test:
(transformer circuit series resistance)

$$
\begin{equation*}
Z_{s}=\frac{V_{s c}}{I_{s c}}=R_{s}+j X_{s} \tag{6}
\end{equation*}
$$

(transformer circuit series impedance)

$$
\begin{equation*}
X_{s}=X_{1}+X_{21}=\sqrt{\left(Z_{s}^{2}-R_{s}^{2}\right)} \tag{7}
\end{equation*}
$$

(total transformer circuit series reactance)

$$
\begin{equation*}
\theta_{s}=\tan ^{-1}\left(X_{s} / R_{s}\right) \tag{8}
\end{equation*}
$$

(phase angle of the series impedance, Z_{s})

$$
\begin{equation*}
V_{z(\%)}=\left(V_{s c} / V_{1}\right) * 100 \tag{9}
\end{equation*}
$$

(transformer impedance valtage percent)

Temperature-correction of resistances and the associated quantities:

i. Correction of Resistances and Impedances From both tests, the total series resistance, R_{s}, and the core-loss resistance, R_{c}, shall be adjusted or corrected in value to that at $75^{\circ} \mathrm{C}$ as applicable to all electrical apparatus [6], [7]. Let the temperature-corrected versions be designated $\mathrm{R}_{\text {scc }}$ and R_{cc}, respectively. For the copper-based resistance, we have from [8]:
$R_{s c c}=R_{s}\left[(234.5+75) /\left(234.5+T_{e}\right)\right]$ (10a) and for the iron or steel based resistance, we shall have

$$
\begin{equation*}
R_{c c}=R_{c}\left[1+\left\{T_{c r}\left(75-T_{e}\right)\right\}\right] \tag{10b}
\end{equation*}
$$

where T_{e} is the equipment temperature at the time of experiment and $T_{c r}$ is the temperature coefficient of resistance of steel which is $0.0045 \mathrm{~K}^{-1}$ [9].

ii. Correction of No-Load Circuit Quantities -

The no-load admittance, impedance, phase angle, power \& current become

$$
\begin{align*}
& Y_{o c c}=\left(\frac{1}{R_{c c}}\right)-j\left(\frac{1}{X_{m}}\right) ; Y_{o c c}= \\
& {\left[\left(\frac{1}{R_{c c}}\right)^{2}+\left(\frac{1}{X_{m}}\right)^{2}\right]^{1 / 2}} \tag{11a}
\end{align*}
$$

$\left.Z_{o c c}=\frac{1}{Y_{o c c}=} \frac{1}{\left[Y_{o c c}\right.} \angle\left(-\theta_{o c c}\right)\right]$ and $\theta_{o c c}=$ $\tan ^{-1}\left(R_{c c} / X_{m}\right)$
$P_{o c c}=\left[V_{1}\right]^{2} / R_{c c}$ and $\cos \phi_{o c c}=P_{o c c} /\left(V_{1} I_{o c c}\right)=p f_{-} o c$

$$
\begin{equation*}
I_{o c c}=\frac{V_{1}}{z_{o c c}} \tag{12}
\end{equation*}
$$

$I_{c c}=I_{\text {occ }} \cos \phi_{o c c}$ and $I_{m c}=I_{o c c} \sin \phi_{o c c}$
iii. Correction of the Relevant ShortCircuit Equivalent Circuit Quantities The short-circuit impedance, phase angle, power \& currents become

$$
\begin{gather*}
Z_{s c c}=\sqrt{\left(R_{s c c}{ }^{2}+X_{s}{ }^{2}\right)} ; \\
\theta_{s c c}=\tan ^{-1}\left(X_{s} / R_{s c c}\right) ; Z_{s c c}=Z_{s c c} \angle \theta_{s c c} \tag{14}\\
\left.I_{s c c}=\frac{V_{s c}}{Z_{s c c}}=\frac{\left(V_{s c c} \angle 0\right)}{\left(Z_{s c c} \angle \theta_{s c c}\right.}\right)= \tag{15}
\end{gather*}
$$

$\left.\frac{\left[V_{s c}\right.}{\left.z_{s c c}\right]\left(-\theta_{s c c}\right.}\right)$
[reduced-voltage short-circuit current]

$$
\begin{equation*}
P_{s c c}=I_{s c c}{ }^{2} R_{s c c} ; p f_{-s c}=\cos \theta_{s c c} \tag{16}
\end{equation*}
$$

copper losses \& p.f.]

Performance Equations For Computations without Saturation

The performance equations shall be obtained from the solution of the approximate equivalent circuit whose phasor diagram is shown in Fig. 3 (the primary voltage, V_{1}, \quad being made the reference quantity).

Fig. 3: Phasor Diagram of the Approximate Equivalent Circuit

And with the six (6) major circuit parameters now known, the computations to yield the performance data becomes possible even manually. Of course, the performance of the equipment must be surveyed under load condition, using the no-load and short-circuit
temperature-corrected experimental data as and where necessary.
Thus, with the primary voltage taken as the reference quantity (i.e. $\mathrm{V}_{1} \angle 0^{\circ}$) and the transformer rated apparent power being $\mathrm{S} \angle \phi$, the input current $\left(I_{1}\right)$ can be obtained from the relationship $S_{1}=S_{1} \angle \phi_{1}=\left(V_{1} \angle 0\right) I_{1}^{*}$ or $I_{1}=$ $\left.\frac{\left[S_{1} \angle-\phi_{1}\right]}{\left(V_{1} \angle 0\right)}=\frac{\left(S_{1}\right.}{V_{1}}\right) \angle\left(-\phi_{1}\right)$
where $\phi_{1}=\cos ^{-1}(p f 1)$ and pfl is the stipulated system input power factor. (17b)
Thus, the load component of the input current and the expected load power factor $\left(\mathrm{pf}_{21}\right)$ are given as

$$
\begin{aligned}
I_{21}= & I_{1}-I_{o c c}= \\
& {\left[I_{1} \angle\left(-\phi_{1}\right)\right]-\left[I_{o c c} \angle\left(-\theta_{o c c}\right)\right] } \\
& =\left(I_{1} \cos \phi_{1}-I_{o c c} \cos \theta_{o c c}\right)- \\
& j\left(I_{1} \sin \phi_{1}-I_{o c c} \sin \theta_{o c c}\right) \\
& \text { Let } I_{21 _a c}=\left(I_{1} \cos \phi_{1}-I_{o c c} \cos \theta_{o c c}\right)
\end{aligned}
$$

$$
\text { [active component of } \mathrm{I}_{21} \text {] }
$$

$$
\text { and } \quad I_{21 _r e}=\left(I_{1} \sin \phi_{1}-I_{o c c} \sin \theta_{o c c}\right)
$$

$$
\text { [reactive component of } \mathrm{I}_{21} \text {] }
$$

i.e.

$$
I_{21}=
$$

$$
\left\{\left[\left(I_{21 _a c}\right)^{2}+\left(I_{\text {21_re }}\right)^{2}\right]^{1 / 2}\right\} \angle\left(-\theta_{21}\right)=
$$

$$
I_{21} \angle\left(-\theta_{21}\right)(18 \mathrm{a})
$$

$$
\begin{equation*}
\left.\phi_{21}=\tan ^{-1} \frac{\left[\left(I_{21, r e}\right)\right.}{\left(I_{21-a c}\right)}\right] \tag{18b}
\end{equation*}
$$

$p f_{21}=\cos \phi_{21}$ [expected actual load power factor]
The transformer impedance voltage drop and associated phase angle are given by

The secondary voltage referred to the primary is expressed as:
$V_{21}=V_{1}-V_{z}=V_{1} \angle 0-V_{z} \angle \theta_{z}=\left(V_{1}-\right.$
$\left.V_{z} \cos \theta_{z}\right)-j V_{z} \sin \theta_{z}$

$$
=\left\{\left[\left(\mathbb{V}_{1}-V_{z} \cos \theta_{z}\right)^{2}+\right.\right.
$$

$$
\begin{equation*}
\left.\left.\left(V_{z} \sin \theta_{z}\right)^{2}\right]^{1 / 2}\right\}<\theta_{v 21} \tag{20a}
\end{equation*}
$$

$\theta_{v 21}=\tan ^{-1}\left[\frac{V_{z} \sin \theta_{Z}}{\left(V_{1}-V_{z} \cos \theta_{z}\right)}\right] \quad$ [phase angle of V_{21}]
$\delta=\theta_{v 21} \quad$ [the displacement or transmission angle]
The load impedance referred to the primary can be computed as
$Z_{L 1}=\frac{V_{21}}{I_{21}=} \frac{\left(V_{21} \angle \delta\right)}{\left(I_{21} \angle\left(-\phi_{21}\right)=\right.} \frac{\left[V_{21}\right.}{\left.I_{21}\right]<\left(\delta+\phi_{21}\right)}(21 \mathrm{a})$
and $\quad \theta_{L 1}=\left(\delta+\phi_{21}\right)$ [overall system output impedance angle] (21b)

$$
\begin{align*}
& V_{z}=I_{21} Z_{s c c}=\left[I_{21} \measuredangle\left(-\phi_{21}\right)\right]\left[Z_{s c c} \angle \theta_{s c c}\right] \\
& =\left[I_{21} Z_{s c c}\right] \angle\left(\theta_{s c c}-\phi_{21}\right)= \\
& V_{z} \angle \theta_{z} ; \quad \theta_{z}=\left(\theta_{s c c}-\phi_{21}\right) \tag{19}
\end{align*}
$$

Total power losses, $\mathrm{P}_{\text {Loss }}$, are given as
$P_{\text {Loss }}=P_{i r}+P_{c o} ; \quad P_{i r}=P_{o c c}=\frac{V_{1}^{2}}{R_{c}}$ and $P_{c o}=$
$I_{21}^{2} R_{s c c}$, respectively (22a)
Active Power deliverable to the Load
$P_{\text {out }}=V_{21} I_{21} \cos \phi_{21}$ (22b)
Efficiency of the transformer, eff, is then expressed as
eff $=\left[\frac{P_{\text {out }}}{\left(P_{\text {out }}+P_{\text {Loss }}\right)}\right] \times 100$
Maximum efficiency will take place when P_{co} (which depends on load) equals $\mathrm{P}_{\text {ir }}$ (which is load independent). Hence, we can write
eff $f_{\text {max }}=\left[\frac{P_{\text {out }}}{\left(P_{\text {out }}+2 P_{\text {ir }}\right)}\right] x 100$
Apparent power deliverable by transformer on full load
$S_{\text {out }}=V_{21} I_{21}$
Apparent power at which maximum efficiency occurs
$S_{\eta(\max)}=S_{\text {out }}\left[\left(\frac{P_{i r}}{P_{c o}}\right)\right]^{1 / 2}$
Voltage regulation, where V_{1} and V_{21} are known, is simply
$V_{\text {reg }}=\left[\frac{\left[\text { NoLoad to Fulload Change in } V_{21}\right]}{\left(\text { Fulload } V_{21}\right)}\right] \times 10$ (26a)
In Fig. 3 the angle δ is usually very small compared to ϕ_{21}. Hence, to simplify matters further we set $\delta=0$ and have
$V_{21}+V_{d}=V_{1} \cos \delta=V_{1}$ and $V_{1}-V_{21}=V_{d}=$ Change in Se
Taking care of both lagging and leading power factor loads the quantity V_{d} shall be expressed as in [10].
$V_{d}=I_{21} R \cos \phi_{21} \pm I_{21} X_{s} \sin \phi_{21}$ (where ' + ' is for lagging and ' - ' for leading p.f.)
Therefore

$$
\begin{equation*}
V_{\text {reg }} \cong \frac{V_{d}}{V_{21}}=\left\{I_{21} \frac{\left[R_{s c c} \cos \phi_{21}+X_{s} \sin \phi_{21}\right]}{V_{21}}\right\} x 100 \tag{26c}
\end{equation*}
$$

For Computations Including Saturatio

(i) From No-Load Equivalent Circuit and Relevant Experimental Data - The saturation factor, $\mathrm{K}_{\text {sat }}$, is as well defined in terms of equivalent circuit reactances as the ratio of $\mathrm{X}_{\text {(unsaturated) }}$ to $\mathrm{X}_{\text {(saturated) }}$; where the saturated equivalent circuit reactance, $X_{(\text {saturated })}$, is that obtained from a full-voltage short-circuit test at $75^{\circ} \mathrm{C}$ according to [7], [11]. That is,
$K_{\text {sat }}=\frac{X_{\text {unsaturated }}}{X_{\text {saturated }}} X_{\text {saturated }}=\frac{X_{\text {unsaturated }}}{K_{\text {sat }}}$ (27)

It is necessary, where saturation is involved, to use the exact equivalent circuit of the electrical apparatus, as in [11]. Saturation has been seen to make the no-load current of machines much higher than when they are unsaturated. Therefore, the primary circuit noload copper loss ($\mathrm{I}_{0}{ }^{2} \mathrm{R}_{1}$) neglected by the use of the approximate equivalent circuit can be quite considerable. The required no-load equivalent circuit is as presented in Fig.4., with due temperature and saturation compensation.

Fig.4: Temperature- and Saturation-Compensated Noload Equivalent Circuit from the Exact T-Equivalent Circuit of Fig. 1

In this circumstance, and where there is doubt as to the actual value the primary circuit
resistance, R_{1}, and reactance X_{1}, typical examples in [4], [12] have shown that close exnhdgry voltage can be obtained by halving the total transformer series resistances and reactance's in each case realized from the laboratory short-circuit test carried out by the reduced voltage method. Thus,
$R_{1 c}=\frac{R_{s c c}}{2} \quad$ [temperature-corrected primary winding resistance only] (28a)
$X_{s 1}=\frac{X_{s}}{2}$; and $X_{s 1_{-} \text {sat }}=\frac{X_{s 1}}{K_{s a t}}=\frac{X_{s}}{\left(2 K_{s a t}\right)}$ [primary unsaturated and saturated reactance's] (28b)
$Z_{\text {ocs_sat }}=R_{1 c}+j X_{\text {s1_sat }} \quad[$ no-load \quad series compensated impedance] (29a)

$$
\begin{gathered}
Y_{o c p _s a t}=\left(\frac{1}{R_{c c}}\right)-j\left(\frac{1}{X_{\text {m_sat }}}\right) ; \\
=\left\{\left[\left(\frac{1}{R_{c c}}\right)^{2}+\right.\right.
\end{gathered}
$$

$\left.\left.\left(\frac{1}{X_{m_{-} s a t}}\right)^{2}\right]^{1 / 2}\right\} \angle\left(-\theta_{\text {ocp_sat }}\right) \quad[$ admittance of the compensated parallel branch circuit and the phase angle]
$Z_{o c p_{-} s a t}=\frac{1}{Y_{o c p_{-} s a t}}=\left(\frac{1}{Y_{o c p_{-} s a t}}\right) \angle \theta_{o c p_{-} s a t}$

$$
=\left[\left(\frac{1}{Y_{o c p_{-} s a t}}\right) \cos \theta_{\text {ocp_s }_{-} a t}\right]+
$$

$j\left[\left(\frac{1}{Y_{o c p_{-} s a t}}\right) \sin \theta_{\text {ocp_sat }}\right]$

$$
=
$$

$Z_{\text {ocp_sat }} \angle \theta_{\text {ocp_sat }} \quad$ the total parallel branch impedance] (29c)

$$
\begin{aligned}
Z_{o c c_{-} s a t}=\left[R_{1 c}\right. & \left.+\left(\frac{1}{Y_{o c p_{-} s a t}}\right) \cos \theta_{o c p_{-} s a t}\right] \\
& +j\left[X_{s 1_{-} s a t}\right. \\
& \left.+\left(\frac{1}{Y_{o c p_{-} s a t}}\right) \sin \theta_{o c p_{-} s a t}\right]
\end{aligned}
$$

Let
$Z_{o c c_{-} s a t _a c}=\left[R_{1 c}+\left(\frac{1}{Y_{\text {ocp_sat }}}\right) \cos \theta_{\text {ocp_s }}\right.$ $]$
[active component of $\mathrm{Z}_{\text {occ_sat }}$]
and

$$
Z_{o c c _s a t _r e}=\left[X_{\text {s1_sat }}+\right.
$$

$\left.\left(\frac{1}{Y_{\text {ocp_sat }}}\right) \sin \theta_{\text {ocp_sat }}\right]\left[\right.$ reactive aspect of $\left.\mathrm{Z}_{\text {occ_sat }}\right]$

$$
Z_{o c c_{-} s a t}=\left\{\left[\left(Z_{o c c_{-} s a t_{-} a c}\right)^{2}+\right.\right.
$$

$\left.\left.\left(Z_{\text {occ_sat_re }}\right)^{2}\right]^{1 / 2}\right\} \angle \theta_{\text {occ_sat }} ;$ where

$$
\theta_{o c c_{-} s a t}=\tan ^{-1}\left[\frac{\left(Z_{\text {occ_sat_re }}\right)}{\left(Z_{\text {occ_sat_ac }}\right)}\right]
$$

\{total impedance of the compensated exact no-load equivalent circuit and angle\} (29d)
$\left.I_{o c c_{-} s a t}=\frac{V_{1}}{Z_{\text {occ_sat }}}=\frac{\left(V_{1} \angle 0\right)}{\left(Z_{\text {occ_sat }}\right.} \angle \theta_{\text {occ_sat }}\right)=$
$\left(\frac{V_{1}}{Z_{o c c_{-} s a t}}\right) \angle\left(-\theta_{o c c_{-} s a t}\right)=I_{o c c_{-} s a t} \angle\left(-\theta_{\text {occ_sat }}\right)$
[the no-load current under saturation] (30a)
$p f_{-o c c_{-} s a t}=\cos \left(\theta_{\text {occ_sat }}\right)$ [no-load power factor under saturation]
$P_{\text {occ_sat }}=V_{1} I_{\text {occ_sat }} \cos \phi_{\text {occ_sat }} \quad[$ total no-load losses under saturation]
(i) From Short-Circuit Equivalent Circuit and Relevant Experimental Data -
The equivalent circuit of Fig. 5 is appropriate for short-circuit computations under saturation, where
$X_{s_{-} \text {sat }}=\frac{X_{s}}{K_{\text {sat }}} \quad$ [saturated total series reactance]
and $R_{s c c}$ [total temperature-corrected series resistance, as in eqn. (28a)] Here, we have chiefly
$Z_{s_{-} s a t}=R_{s c c}+j X_{S_{-} s a t}=$
$\left[\left(R_{s c c}^{2}+X_{S_{-} s a t}^{2}\right)^{1 / 2}\right] \angle \theta_{S_{-} s a t}=Z_{S_{-} s a t} \angle \theta_{S_{-} s a t}$
where $\quad \theta_{s_{-} s a t}=\tan ^{-1}\left(\frac{X_{S_{-} s a t}}{R_{s c c}}\right)$
[being the total short-circuit impedance under saturation and the impedance angle]

Fig.5: Temperature-Compensated Short-Circuit Equivalent Circuit of Transformer under Saturation and with Quantities referred to the Primary.
$\left.I_{S_{-} f u l l}=\frac{V_{1}}{Z_{S_{-} s a t}}=\frac{\left(V_{1} \angle 0\right)}{\left(Z_{S_{-} s a t}\right.} \angle \theta_{S_{-} s a t}\right) \frac{\left(V_{1}\right.}{\left.Z_{S_{-} s a t}\right)} \angle\left(-\theta_{S_{-} s a t}\right)$ [short-circuit current on full voltage reflecting saturation]
(iii) From the Complete Exact Equivalent Circuit on Full-Load -
The equivalent circuit for generation of the relevant equations is as provided in Fig.6.

Fig.6: Temperature-Compensated Exact T-Equivalent Circuit of the Transformer with secondary quantities referred to the primary under Saturation Effect.

As earlier explained, it is acceptable to state that
$R_{1 c}=R_{21 c}=\frac{R_{s c c}}{2 \text { and }} X_{s 1_{-} s a t}=X_{s 21 _s a t}=\frac{X_{S_{_} s a t}}{2}$
The mid-point voltage of the equivalent circuit is given as

$$
\begin{aligned}
& V_{m_{_} s a t}=I_{\text {occ_sat }} Z_{\text {ocp_sat }} \\
& =\left[I_{\text {occ_sat }} \angle\left(-\theta_{\text {occ_sat }}\right)\right]\left[Z_{\text {ocp_sat }} \angle \theta_{\text {ocp_sat }}\right]
\end{aligned}
$$

Since the load impedance, $\mathrm{Z}_{\mathrm{L} 1} \angle \theta_{\mathrm{L} 1}$, remains the same irrespective of the saturation or otherwise of the transformer, the system input impedance shall reflect this fact when computed as follows.
$Z_{\text {in_sat }}=Z_{s 1_{-} s a t}+Z_{o c p_{-} s a t} / /\left(Z_{s 21_{-} s a t}+Z_{L 1}\right)$
Let

$$
\begin{gather*}
Z_{s L 1 _s a t}=Z_{s 21 _s a t}+Z_{L 1} \tag{36a}\\
=Z_{s 21 _s a t} \angle \theta_{s 21 _s a t}+Z_{L 1} \angle \theta_{L 1} \\
=\left(Z_{s 21 _s a t} \cos \phi_{s 21 _s a t}+\right. \\
\left.Z_{L 1} \cos \theta_{L 1}\right)
\end{gather*}
$$

$$
+j\left(Z_{s 21 _s a t} \sin \phi_{s 21 _s a t}+\right.
$$

$$
\left.Z_{L 1} \sin \theta_{L 1}\right)
$$

Let $Z_{\text {sL1_sat_ac }}=\left(Z_{\text {s21_sat }} \cos \phi_{\text {s21_sat }}+\right.$ $Z_{L 1} \cos \theta_{L 1}$) [active part of $Z_{\text {sL1_sat }}$] and $Z_{\text {sL1_sat_re }}=\left(Z_{s 21 _s a t} \sin \phi_{\text {s21_sat }}+\right.$ $Z_{L 1} \sin \theta_{L 1}$) [reactive part] so that we have
$Z_{s L 1 \text { _sat }}=$
$\left\{\left[\left(Z_{\text {sL1_sat_ac }}\right)^{2}+\right.\right.$
$\left.\left.\left(Z_{\text {sL1_sat_re }}\right)^{2}\right]^{1 / 2}\right\} \angle\left(\theta_{\text {sL1_sat }}\right)=Z_{\text {sL1_sat }} \angle \theta_{S L 1 _s a t}$ (38b)
$\theta_{\text {sL1_sat }}=\tan ^{-1} \frac{\left[Z_{\text {SL1_sat_re }}\right]}{Z_{\text {sL1_sat_ac }}} \quad$ [phase angle of
$\left.\mathrm{Z}_{\text {sL1_sat }}\right] \quad$ (38c)
Let $\quad Z_{p L 1 _s a t}=Z_{o c p _s a t}+Z_{s L 1 _s a t}=$
$Z_{\text {ocp_sat }} \angle \theta_{\text {ocp_sat }}+Z_{\text {sL1_sat }} \angle \theta_{\text {sL1_sat }}$ (39a) $=\left(Z_{\text {ocp_sat }} \cos \phi_{\text {ocp_sat }}+Z_{\text {sL1_sat }} \cos \theta_{\text {sL1_sat }}\right)$
$+j\left(Z_{\text {ocp_sat }} \sin \phi_{\text {ocp_sat }}+\right.$ $\left.Z_{s L 1 _s a t} \sin \theta_{s L 1 _s a t}\right)$
Let $Z_{p L 1_{-} s a t _a c}=\left(Z_{o c p_{-} s a t} \cos \phi_{o c p_{-} s a t}+\right.$ $Z_{s L 1_{-} s a t} \cos \theta_{s L 1_{-} s a t}$) [active part of $Z_{\mathrm{pL} 1_{-} \text {sat }}$] and $Z_{p L 1 _s a t _r e}=\left(Z_{o c p _s a t} \sin \phi_{o c p_{-} s a t}+\right.$ $\left.Z_{s L 1_{-} s t} \sin \theta_{s L 1 _s a t}\right)$ [reactive part]
so that we have
$Z_{p L 1_{-} \text {sat }}=$
$\left\{\left[\left(Z_{p L 1 _s a t _a c}\right)^{2}+\right.\right.$
$\left.\left.\left(Z_{p L 1 _s a t _r e}\right)^{2}\right]^{1 / 2}\right\} \angle\left(\theta_{p L 1 _s a t}\right)=$
$Z_{p L 1 _ \text {_s }}<\theta_{p L 1 _ \text {_sat }}$

$$
\begin{align*}
& =\left[I_{\text {occ_sat }} Z_{\text {ocp_sat }}\right] \angle\left(\theta_{\text {ocp_sat }}-\right. \\
& \left.\theta_{o c c _s a t}\right) ; \theta_{v m_{-} s a t}=\left(\theta_{o c p_{-} s a t}-\theta_{o c c_{-} s a t}\right) ; \\
& =\frac{\left[I_{o c c _s a t}\right.}{\left.Y_{o c __{-} a t}\right]} \angle \theta_{v m_{-} s a t}=V_{m_{-} s a t} \angle \theta_{v m_{-} \text {sat }} \tag{35}
\end{align*}
$$

$\theta_{p L 1_{-} s a t}=\tan ^{-1} \frac{\left[Z_{p L 1_{1} \text { sat__e }}\right]}{Z_{p L 1 _a t-a c}} \quad$ [phase angle of
$\left.\mathrm{Z}_{\mathrm{pL1} \text { _sat }}\right]$
$Z_{s p L_{-} s a t}=Z_{o c p_{-} s a t} / / Z_{s L 1_{-} s a t}=\frac{\left(Z_{o c p _s a t} * Z_{s L 1 _s a t}\right)}{Z_{p L 1 _s a t}}$
(40a)
$=\left[\frac{\left(Z_{\left.o c p_{\text {_sat }} * Z_{\text {sL1_sat }}\right)}\right.}{Z_{p 1_{1} s a t}}\right] \angle\left(\theta_{o c p_{-} s a t}+\theta_{s L 1_{-} s a t}-\right.$
$\left.\theta_{\text {pL1_sat }}\right)$
$=Z_{s p L_{-} s a t} \angle \theta_{s p L_{-} s a t} ; \quad \theta_{s p L_{-} s a t}=\left(\theta_{o c p_{-} s a t}+\right.$
$\left.\theta_{\text {sL1_sat }}-\theta_{\text {pL1_sat }}\right)$
$Z_{\text {in_sat }}=Z_{s 1_{\text {_s }} a t}+Z_{\text {spL_sat }}=Z_{\text {s1_sat }} \angle \theta_{\text {s1_sat }}+$ $Z_{s p L_{-} s a t}<\theta_{\text {spL_s }}$ st
$=\left(Z_{s 1_{-} s a t} \cos \phi_{s 1_{-} s a t}+Z_{s p L_{-} s a t} \cos \theta_{s p L_{-} s a t}\right)$
$+j\left(Z_{s 1_{1} s a t} \sin \phi_{\text {s1_sat }}+Z_{\text {spL_sat }} \sin \theta_{\text {spL_sat }}\right)$
Let $Z_{\text {in_sat_ac }}=\left(Z_{s 1_{_} s a t} \cos \phi_{\text {s1_sat }}+\right.$
$\left.Z_{s p L_{-} s a t} \cos \theta_{s p L_{-} s a t}\right)$ [active part of $\mathrm{Z}_{\text {in_sat }}$]
and $Z_{\text {in_sat_re }}=\left(Z_{s 1_{\text {_sat }}} \sin \phi_{\text {s1_sat }}+\right.$
$\left.Z_{s p L_{-} s t} \sin \theta_{s p L_{-} s a t}\right)$ [reactive part]
so that we have
$Z_{\text {in_sat }}=$
$\left\{\left[\left(Z_{\text {in_sat_ac }}\right)^{2}+\left(Z_{\text {in_sat_re }}\right)^{2}\right]^{1 / 2}\right\} \angle\left(\theta_{\text {in_sat }}\right)=$
$Z_{\text {in_sat }} \angle \theta_{\text {in_sat }}$ (41b)
$\theta_{\text {in_sat }}=\theta_{1_{-} s a t}=\tan ^{-1} \frac{\left[Z_{\text {in_sat_re }} Z_{\text {in_sat_ac }} \quad \quad \text { [phase }\right.}{}$
angle of $\left.Z_{\text {in_sat }}\right]$ (41c)
And being that saturation is surveyed relative to the primary terminal voltage, V1, we shall have the input current as
$I_{1 _s a t}=\frac{V_{1}}{Z_{\text {in }}=} \frac{\left(V_{1} \angle 0\right)}{\left(Z_{\text {in_sat }} \angle \theta_{1 _s a t}\right)}=\frac{\left(V_{1}\right.}{z_{\text {in_sat }}<\left(-\theta_{1 _s a t}\right)}=$
$I_{1 _ \text {sat }}<\left(-\theta_{1 _ \text {sat }}\right)$
Input or primary side power factor under
saturation becomes
$p f_{1 \text { _sat }}=\left(\cos \phi_{1 _ \text {sat }}\right)$
The load current is then given as
$I_{21 _s a t}=I_{1 _s a t}-I_{o c c _s a t}=I_{1 _s a t}<\left(-\theta_{1 _s a t}\right)-$
$I_{o c c _s a t}<\left(-\theta_{\text {occ_sat }}\right)$
(44a) $=$
$\left(I_{1 _s a t} \cos \theta_{1 _s a t}-I_{o c c_{-} s a t} \cos \theta_{o c c _s a t}\right)$
$-j\left(I_{1 _s a t} \sin \theta_{1 _s a t}-I_{o c c _s a t} \sin \theta_{o c c _s a t}\right)$
Let
$I_{21 _s a t _a c}=$
($\left.I_{1 _s a t} \cos \theta_{1 _s a t}-I_{o c c _s a t} \cos \theta_{o c c_{-} s a t}\right) \quad$ [active
$\mathrm{I}_{21 \text { _sat }}$]
and
$I_{21 _ \text {sat_re }}=$
$\left(I_{1 _s a t} \sin \theta_{1 _s a t}-I_{o c c _s a t} \sin \theta_{o c c _s a t}\right) \quad$ [reactive part]
So that we can write
$I_{21 _s a t}=$
$\left\{\left[\left(I_{21 _s a t _a c}\right)^{2}+\left(I_{21 _s a t _r e}\right)^{2}\right]^{1 / 2}\right\} \angle\left(-\phi_{21 _s a t}\right)=$ $I_{21 _s a t} \angle\left(-\phi_{21 _s a t}\right) \quad$ (44b)
where $\phi_{21 _s a t}=\left[\frac{I I_{21 _s a t _r e}}{I_{21 _s a t _a c}}\right]\left\{p h\right.$. angle of I_{21} under saturation $\} \quad$ (44c)
Actual load power factor under saturation will be
$p f_{21 _s a t}=\left(\cos \phi_{21 _s a t}\right)$
The output or secondary voltage referred to primary
$V_{21 _s a t}=I_{21 _s a t} Z_{L 1}=$
$\left[I_{21 _s a t} \angle\left(-\phi_{21 _s a t}\right)\right] Z_{L 1} \angle \theta_{L 1}$
$=\quad I_{21 _s a t} Z_{L 1} \angle\left(\theta_{L 1}-\phi_{21 _s a t}\right)=V_{21 _s a t} \angle \delta_{\text {_sat }}$ $\delta_{-s a t}=\left(\theta_{L 1}-\phi_{21 _s a t}\right)$
[transmission or displacement angle] (46b)
$P_{\text {Loss_sat }}=P_{\text {occ_sat }}+P_{\text {co_sat }}=$
$V_{1} I_{o c c _s a t} \cos \phi_{o c c_{-} s a t}+I_{21}^{2} R_{s c c}$
The apparent power deliverable by transformer on full load under saturation is
$S_{\text {out_sat }}=V_{21 _s a t} I_{21}$ (48)
Active power deliverable by transformer on full load under saturation
$P_{\text {out_sat }}=S_{\text {out_sat }} p f_{21 _ \text {sat }}$
The efficiency of the transformer under saturation is then expressed as
eff $f_{\text {sat }}=\left[\frac{P_{\text {out_sat }}}{\left(P_{\text {out_sat }}+P_{\text {Loss_sat }}\right)}\right] \times 100$
Also, maximum efficiency will take place when $\mathrm{P}_{\text {co_sat }}$ equals $\mathrm{P}_{\text {occ_sat }}$.
Hence, we can write
eff $f_{\text {max_sat }}=\left[\frac{P_{\text {out_sat }}}{\left(P_{\text {out_sat }}+2 P_{\text {occ_sat }}\right)}\right] x 100$
Apparent power at which maximum efficiency occurs under saturation
$S_{\eta(\max)^{\prime} \text { sat }}=S_{\text {out_sat }}\left[\left(\frac{P_{\text {occ_sat }}}{P_{\text {co_sat }}}\right)\right]^{1 / 2}$
Voltage regulation under saturation is given by
$V_{\text {reg_sat }} \cong$
$\left\{I_{21 _s a t} \frac{\left[R_{\text {scc }} \cos \phi_{\text {21_sat }}+X_{S_{\text {_s }}} \sin \phi_{\text {21_sat }}\right]}{V_{21 _s a t}}\right\} x 100$

EXPERIMENTATION \& THE RESULTS

Figure 7 that follows is a pictorial display of one of the laboratory experiments carried out during this work, which had to do with the determination of the opencircuit characteristic (OCC) of the transformer. The other no-load (or open-circuit) and short-circuit tests for parameter survey were similarly conducted using the relevant apparatus. The results obtained were as
provided in Tables 1 and 2. They were all carried out on the HV side of the transformer, which is the secondary side being an inverter transformer (or a step-up transformer).

Fig. 7: Picture showing apparatus as set up for OpenCircuit Characteristic Test of the Inverter Transformer.

Table 1: Open-circuit Characteristic Test Result

HV Volt s	0 V	20 V	40 V	60 V	80 V	100 V	120 V	140 V
HV Amp s	0 A	0.03	0.05 A	0.07 A	0.10 A	0.12 A	0.15 A	0.19 A
HV Volt s	160 V	180 V	200 V	2.20 V	240 V	260 V	280 V	
HV Amp s	0.26 A	0.36 A	0.52 A	0.75 A	1.04 A	1.41 A	1.84 A	

Table 2: No-Load and Short-Circuit Tests
Results for Parameter Survey

DESCRIPTI ON OF TEST	APPLIE D VOLTA GE	CURR ENT DRAW N	POWER CONSU MED	REMAR KS
OPEN-	$\mathrm{V}_{-\mathrm{oc}}=$	$\mathrm{I}_{-\mathrm{oc}}=$	$\mathrm{P}_{\mathrm{oc}}=$	Winding
CIRCUIT	230 V	0.86 A	40 W	Temp
SHORT-	$\mathrm{V}_{-\mathrm{sc}}=$	$\mathrm{I}_{-\mathrm{sc}}=$	$\mathrm{P}_{\mathrm{sc}}=$	$=35^{\circ} \mathrm{C}$
CIRCIUT	20 V	11 A	160 W	

In order to apply the generated equations for performance parameter survey all the current and voltage quantities in Table 2 must first be referred to the primary side, using the following relationships as in [3]:
$V_{o c}=\frac{V_{1}}{V_{2}} * V_{-o c}$ and $I_{o c}=\frac{V_{2}}{V_{1}} * I_{-o c}$ for the open circuit test
$V_{s c}=\frac{V_{1}}{V_{2}} * V_{-s c}$ and $I_{s c}=\frac{V_{2}}{V_{1}} * I_{-s c}$ for the short circuit test
(53)

The values for application are as provided in
Table3.

Table 3: No-Load and Short-Circuit Test Results referred to the Primary

OPEN-CIRCUIT TEST	$\mathrm{V}_{\mathrm{oc}}=48 \mathrm{~V}$	$\mathrm{I}_{\mathrm{oc}}=4.12 \mathrm{~A}$	$\mathrm{P}_{\mathrm{oc}}=40 \mathrm{~W}$
SHORT-CIRCIUT TEST	$\mathrm{V}_{\mathrm{sc}}=4.17 \mathrm{~V}$	$\mathrm{I}_{\mathrm{sc}}=52.7 \mathrm{~A}$	$\mathrm{P}_{\mathrm{sc}}=160 \mathrm{~W}$

However, for the magnetization curve (or OCC) determination, the values of applied voltage and exciting current obtained by experimentation were used directly, as there was no need to refer quantities from secondary to primary.

3.0 COMPUTER PROGRAMMING \& TESTRUNNING RESULT
 3.1 THE COMPUTER PROGRAMMING

The computer programming was done in MATLAB language. Other programming languages include Foxpro, C/C++, Visual Basic, Pascal, Ada, Fortran and Visual C++ [13]. MATLAB is an acronym for Matrix Laboratory, a product developed and licensed by Math Works Inc. [14]. This is a software package for high performance and visualization, combining capabilities, flexibilities, reliability and powerful graphics, hence, suitable for engineers and scientists. The most important feature of MATLAB is its programming capability, which is relatively easy to learn and to use, and which allows user-developed functions [15].

3.2 PROGRAM TEST-RUNNING RESULT

A) Without Magnetic Saturation

Applied_Input_Voltage_in_Volts = 48
Input_Current_of_System_in_Amps = 62.5000

Input_Impedance_of_System_in_Ohms = 0.7680

Input_Power_Factor_Angle_in_Deg = 25.8419

Input_Power_Factor_in_pu = 0.9000
No_Load_Current_in_Amps = 4.0962
No_Load_Power_Factor_in_pu = 0.1724
Short_circuit_Power_Factor_in_pu = 0.7733

System_Actual_Load_Current_in_Amps = 60.1975

Power_Factor_on_Full_Load_in_pu = 0.9227

Load_Power_Factor_Angle_in_Deg = 22.6770

Output_Voltage_on_Full_Load_in_Volts = 43.0917

Voltage_Regulation_in_Percentage =
10.3471

Total_NoLoad_Losses_in_Watts = 33.8983
Total_Load_or_Copper_Losses_in_Watts = 157.1794

Efficiency_on_Full_Load_in_Percentage = 89.7400

Maximum_Efficiency_in_Percentage = 97.2455

Apparent_Power_Delivered_in_VA = $2.5940 \mathrm{e}+003$
Active_Load_Power_Delivered_in_W = $2.3935 \mathrm{e}+003$
Load_for_Maximum_Efficiency_in_VA = 975
Impedance_Voltage_Percentage_Rating = 8.6875

Displacement_Angle_in_Degrees = 1.9647

Load_System_Impedance_in_Ohms = 0.7158

Load_Impedance_Angle_in_Deg = 24.6417

The MATLAB plotted magnetizing curve as copied from the Workspace and reduced, is given in Fig. 8a. The line of linearity (LOL), the arrows, the computation and the labeling as provided in Fig. 8b are post-Matlab-plot additions by the author to enable determination of the saturation level, $\mathrm{K}_{\text {sat }}$.

Fig. 8: Open-Circuit Characteristic of the Single-Phase Transformer; (a) as Matlab plotted, (b) as used to estimate saturation factor

B) With Saturation Effect

Applied_Input_Voltage_in_Volts = 48
Input_Current_of_System_in_Amps = 67.2283

Input_Impedance_of_System_in_Ohms = 0.7680

Input_Power_Factor_Angle_in_Deg = 32.1542

Input_Power_Factor_in_pu = 0.8466
No_Load_Current_in_Amps = 12.0913
No_Load_Power_Factor_in_pu = 0.0664
Short_circuit_Power_Factor_in_pu = 0.0830

System_Actual_Load_Current_in_Amps = 60.9190

FullVoltage_ShortCircuit_Current_Amps = 699.8425

Power_Factor_on_Full_Load_in_pu = 0.9211

Load_Power_Factor_Angle_in_Deg = 22.9095

Output_Voltage_on_Full_Load_in_Volts = 43.6081

Voltage_Regulation_in_Percentage = 9.3841

Total_NoLoad_Losses_in_Watts = 38.5456
Total_Load_or_Copper_Losses_in_Watts = 239.7492

Efficiency_on_Full_Load_in_Percentage = 89.5680

Maximum_Efficiency_in_Percentage = 96.8745

Apparent_Power_Delivered_in_VA =
$2.5940 \mathrm{e}+003$
Active_Load_Power_Delivered_in_W = $2.3894 \mathrm{e}+003$
Load_for_Maximum_Efficiency_in_VA = 1040
Impedance_Voltage_Percentage_Rating = 9.1497

Displacement_Angle_in_Degrees = 1.7322

Load_System_Impedance_in_Ohms =
0.7158

Load_Impedance_Angle_in_Deg = 24.6417 DONE

4.0 DISCUSSION, CONCLUSION \& RECOMMENDATION

4.1 DISCUSSION

A tabular approach as often adopted by this authors in respect of the discussion of the performance of electrical apparatus is used here for the refurbished inverter transformer performance detailing as presented in Tables 4(a) and 4(b) that follow.
Table 4(a): Performance Analysis of the Transformer without Saturation

S/N	 OTHER DESCRIPTIONS	OBTALNED	EXPECTED	REMARK
1	Magnetic System Performance	No-Load Current, I_{o}	4.096 A	$3-10 \% \mathrm{I}_{\text {rated }}$ as in [16] $\left(6.55 \% \mathrm{I}_{\text {rated }}\right)$
p.415; [3] p.37				

6	Impedance Voltage, $\mathrm{V}_{z \%}$	$8.69 \% \mathrm{~V}_{\text {rated }}$	$5-10 \% \mathrm{~V}_{\text {rated }}$ as in [3] p.39; 5- $17 \% \mathrm{~V}_{\text {rated }}$ as in $[16] \mathrm{p} .416$	Good
	Power Transfer Performance Proper			
7	Output power factor, pf21	0.9227 p.u.	≥ 0.90	Good
8	Real Power Delivery	2395.5 W	$\geq 2760 \mathrm{~W}$ (for 0.92 output (79.83\%kVA) power factor) i.e. 92\%kVA	Good
9	Efficiency (nominal)	89.74% on full load	$96-99 \%$ as in [3] p. 48	Fair
10	Displacement or Transmission Angle	1.965°	$2.8-20^{\circ}$ as typical with transmission lines [19], [20]	Good

Table 4(b): Performance Analysis of the
Transformer under Saturation
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { S/N } & \begin{array}{c}\text { PARAMETER \& } \\ \text { OTHER } \\ \text { DESCRIPTIONS }\end{array} & \text { VALUE } & \begin{array}{c}\text { VALUE } \\ \text { WITHOUT }\end{array} & \text { REMARK } \\ \hline \text { SATURATION }\end{array}\right]$

From the OCC, it is clear that the transformer begins to get saturated around 150 V . At the rated voltage of 230 V (on the secondary) the apparatus is seen to
operate at a saturation level of 3.0 p.u., (which is a fairly high level). Significantly, under saturation the transformer experiences impoverishment of its input power factor, resulting in a higher reactive power demand for virtually the same active power delivery. A higher input current thus comes into play, being fueled mostly by the 295% increase in the no-load current (for a 3.0 p.u. level of saturation). Load losses increase by 52.53%, and the no-load losses increase by 13.71%. However, there is a small improvement in voltage regulation occasioned by the small improvement in the output voltage due to saturation, whilst the output real power, efficiency, and output power factor remain virtually the same.

4.2 CONCLUSION \& RECOMMENDATION

Comparing the values of the transformer exciting current, power losses, active power delivery, voltage regulation and efficiency obtained from this survey (as key performance parameters) with standard performance values as sourced from standard text, it is clear that the performance of the refurbished inverter transformer is fairly good. It is equally conclusive that saturation (if not on the extreme side) does favour the performance of a transformer in many ways, including higher output voltage, lower voltage regulation, higher VA capability at maximum efficiency and lower transmission angle (the latter which makes for higher stability in the transfer of active power).

The evaluation exercise was made a lot easier, quicker and surer by means of the computer software application approach which was adopted and pursued. It is therefore recommendable to transformer repair workshops for easy determination of transformer performance status both for industrial, commercial and educational applications.

REFERENCES

[1] Reeves E. A. (1987): Electrical Pocket Book, $19^{\text {th }}$ Ed., London, Heinemann Professional Publishing.
[2] Taylor E. O. (1973): Electromechanical Energy Conversion; London; Peter Peregrinus Ltd
[3] Gupta J. B.(2005): Theory and Performance of Electrical Machines; $14^{\text {th }}$ Ed.; NaiSarak, Delhi; S. K. Kataria \& Sons; p.25, 34; part III
[4] Daniels A. R. (1976): Introduction to Electrical Machines, Maiden Ed., London, Macmillan Press Limited.
[5] Shepherd J. Morton A. H. \& Spence L. F. (1970): Higher Electrical Engineering, $2^{\text {nd }}$ Ed., London, Pitman Publishing Limited.
[6] Enyong P. M. (2014): Computer Software Application in the Redesign and Refurbishment of Squirrel-Cage

Induction Motors; PhD Thesis, Department of Electrical \& Electronic Engineering, University of Benin, Benin-City, Nigeria.
[7] Liwschitz-Garik M. and Whipple C. C. (19-):Alternating Current Machines, $2^{\text {nd }}$ Ed., Princeton, New Jersey, D. Van Nostrand Co. Inc.; p.123-149, 161-193, 216-243.
[8] Asea Brown Boveri (1988): Switchgear Manual; $8^{\text {th }}$ Ed.; Mannheim, Federal Republic of Germany; ABB Publishing.
[9] Qassim University (2014): Electrical Machine Laboratory (EE332); Electrical Engineering Department; College of Engineering; Q.U., Buraidah; KSA.
[10] Agbachi E. O., Ambafi J. G., Tola O. J., Ohize H. O. (2012): Design \& Analysis of Three-phase Induction Motor using Computer Program; World Journal of Engineering and Pure and Applied Science; pp.118-124.
[11] Enyong P. M. (2015): Numerical Deterministic Method of Including Saturation Effect in the Performance Analysis of a Single-Phase Induction Motor; International Journal of Engineering Research and Development; Vol. 11, Issue 06; pp 66-74.
[12] Theraja B. L. (1997): Fundamentals of Electrical Engineering and Electronics, $28^{\text {th }}$ Ed., New Delhi, S. Chand \& Co. Limited; p. 448.
[13] Enyong P. M. \& Ike S. A. (2014): Computer-Aided Performance Analysis of a Refurbished Three-Phase Induction Motor; International Journal of Engineering Innovation \& Research; Vol. 3, Issue 5, ISSN: 2277-5668; pp.672-678. Sarak, Delhi; S. K. Kataria \& Sons.
[14] Okoro O. I. (2005): Introduction to MATLAB/SIMULINK for Engineers and Scientists, NsukkaNigeria, John Jacob's Classic Publishers Ltd.; p. 01.
[15] Enyong P. M. (2008): Refurbishment and Steady-State Performance Analysis of a 3-phase Induction Motor, M. Eng. Thesis, Elect./Elect. Engng. Dept., University of Benin, Benin-City, Nigeria; p.114, 115.
[16] Kostenko M and Piotrovsky L. (1977): Electrical Machines, vol. 2, Moscow, Mir Publishers.
[17] Mittle V. N. \& Mittal A. (1996): Design of Electrical Machines, $4^{\text {th }}$ Ed., Nai Sarak, Delhi, Standard Publishers Distributors.
[18] Prochazka M.(): Modeling of Current Transformers under Saturation Conditions; Advances in Electrical \& Electronic Engineering; University of West Bohemia, Dept. of Electric Power \& Ecology; pp.94-97.
[19] Mehta V. K. and Mehta Rohit (2009): Principles of Electrical Machines, $2^{\text {nd }}$ Ed., New Delhi, S. Chand \& Company Limited; p.233-261.
[20] Gupta B. R. (2006): Power System Analysis and Design; $4^{\text {th }}$ Ed., Ram Nagar, New Delhi; S. Chand \& Company Ltd.; p.56-120.

